收藏 分享(赏)

多元函数的全微分.ppt

上传人:scg750829 文档编号:6745301 上传时间:2019-04-22 格式:PPT 页数:25 大小:1.07MB
下载 相关 举报
多元函数的全微分.ppt_第1页
第1页 / 共25页
多元函数的全微分.ppt_第2页
第2页 / 共25页
多元函数的全微分.ppt_第3页
第3页 / 共25页
多元函数的全微分.ppt_第4页
第4页 / 共25页
多元函数的全微分.ppt_第5页
第5页 / 共25页
点击查看更多>>
资源描述

8.2 多元函数的偏导数与全微分(2),主要内容 全微分的定义 函数可微的条件,由一元函数微分学中增量与微分的关系,在二元函数中分别令y,x为常数可得:,一、全微分的定义,全增量的概念,全微分的定义,事实上,从而,二、函数可微的条件,证,总成立,同理可得,一元函数在某点的导数存在 微分存在,多元函数的各偏导数存在 全微分存在,?,例如:,则,当 时,,函数的各偏导数存在, 函数未必可求全微分。,证,(依偏导数的连续性),习惯上,记全微分为,全微分的定义可推广到三元及三元以上函数,有时也称二元函数的全微分等于它的两个偏微分之和(叠加原理),从而叠加原理也适用于二元以上函数的情况,解,所求全微分,解,解,所求全微分,证,令,则,同理,不存在,多元函数连续、可导、可微的关系,全微分在近似计算中的应用,也可写成,解,由公式得,思考题,(A)充分条件而非必要条件,(B)必要条件而非充分条件,(C)充分必要条件,(D)既非充分条件又非必要条件,(A) 连续、偏导数存在,(B)连续、偏导数不存在,(C) 不连续、偏导数存在,(D)不连续、偏导数不存在,偏导数存在,又当(x,y)沿y=kx趋向于(0,0)时,随着k的不同,该极限值也不同,所以极限 不存在, f(x,y)在(0,0)不连续。,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报