1、圆周角和圆心角的关系(1),一、旧知回放:,1.圆心角的定义?,答:相等.,答:顶点在圆心的角叫圆心角.,2.圆心角的度数和它所对的弧的度数的关系?,2,3、(茂名)下列命题是真命题的是( ) 1)垂直弦的直径平分这条弦 2)相等的圆心角所对的弧相等 3)圆既是轴对称图形,还是中心对称图形 A 1) 2) B 1) 3) C 2) 3) D 1) 2) 3),课堂测验,1、如图,O中,AOB=100,则AB弧的度数为_,AnB弧的度数为_。 2、圆的一条弦把圆分为度数的比为15的两条弧,如果圆的半径为6,那么这弦的弦心距等于_,弦长等于_。 3、判断题: (1)相等的圆心角所对的弧相等 ( )
2、 (2)等弦对等弧( ) (3)等弧对等弦( ) (4)长度相等的两条弧是等弧( ) (5)平分弦的直径垂直于弦( ),100,260,6,圆心角顶点发生变化时,我们得到几种情况?,A,.,O,B,C,A,A,探索1:,二、探索新知:,3,.,.,.,思考:三个图中的BAC的顶点A各在圆的什么位置?角的两边和圆是什么关系?,圆周角,在射门游戏中(如图),球员射中球门的难易程度与他所处的位置B对球门AC的张角(ABC)有关.,思考:图中的ABC的顶点A各在圆的什么位置?ABC的两边和圆是什么关系?,圆周角,探索2:,你能仿照圆心角的定义给圆周角下个定义吗?,特征:, 角的顶点在圆上., 角的两边
3、都与圆相交.,圆周角定义: 顶点在圆上, 并且两边都和圆相交的角 叫圆周角.,练习:,1.判别下列各图形中的角是不是圆周角,并说明理由。,不是,不是,是,不是,不是,图,图,图,图,图,2、指出图中的圆周角。,圆周角: 顶点在圆上,它的两边分别 与圆还各有一个交点,像这样的角,叫做圆周角.,圆周角,当球员在B,D,E处射门时,他所处的位置对球门AC分别形成三个张角ABC, ADC,AEC.这三个角的大小有什么关系?.,为了解决这个问题,我们先探究一条弧所对的圆周角和圆心角之间有的关系.,类比圆心角探知圆周角,在同圆或等圆中,相等的弧所对的圆心角相等.,在同圆或等圆中,相等的弧所对的圆周角有什么
4、关系?,圆周角和圆心角的关系,如图,观察弧AC所对的圆周角ABC与圆心角AOC,它们的大小有什么关系?,说说你的想法,并与同伴交流.,教师提示:注意圆心与圆周角的位置关系.,圆周角和圆心角的关系,1.首先考虑一种特殊情况: 当圆心(O)在圆周角(ABC)的一边(BC)上时,圆周角ABC与圆心角AOC的大小关系.,AOC是ABO的外角,,AOC=B+A.,OA=OB,,A=B.,AOC=2B.,即 ABC = AOC.,你能写出这个命题吗?,一条弧所对的圆周角等于它所对的圆心角的一半.,老师期望:你可要理解并掌握这个模型.,圆周角和圆心角的关系,如果圆心不在圆周角的一边上,结果会怎样? 2.当圆
5、心(O)在圆周角(ABC)的内部时,圆周角ABC与圆心角AOC的大小关系会怎样?,老师提示:能否转化为1的情况?,过点B作直径BD.由1可得:, ABC = AOC.,你能写出这个命题吗?,一条弧所对的圆周角等于它所对的圆心角的一半.,ABD = AOD,CBD = COD,圆周角和圆心角的关系,如果圆心不在圆周角的一边上,结果会怎样? 3.当圆心(O)在圆周角(ABC)的外部时,圆周角ABC与圆心角AOC的大小关系会怎样?,老师提示:能否也转化为1的情况?,过点B作直径BD.由1可得:, ABC = AOC.,你能写出这个命题吗?,一条弧所对的圆周角等于它所对的圆心角的一半.,ABD = A
6、OD,CBD = COD,圆周角定理,综上所述,圆周角ABC与圆心角AOC的大小关系是:,圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.,老师提示:圆周角定理是承上启下的知识点,要予以重视.,即 ABC = AOC.,练习:,2.如图,圆心角AOB=100,则ACB=_。,1.求圆中角X的度数,130,C,C,D,B,3、 如图,在直径为AB的半圆中,O为圆心,C、D为半圆上的两点,COD=500,则CAD=_,做做看,收获知多少?,一、判断 1、顶点在圆上的角叫圆周角。 2、圆周角的度数等于所对弧的度数的一半。 二、计算 1、半径为R的圆中,有一弦分圆周成1:2两 部分,则弦所对的
7、圆周角的度数是 。,O,60或120,2、如图,在O中,BOC=50,求A的大小.,解: A= BOC = 25.,习题1.如图:OA、OB、OC都是O的半径 AOB=2BOC. 求证:ACB=2BAC.,证明:,ACB= AOB,1,2,BAC= BOC,2,AOB=2BOC,ACB=2BAC,四、新知应用:,1,规律:解决圆周角和圆心角的计算和证明问题,要准确找出同弧所对的圆周角和圆心角,然后再灵活运用圆周角定理,一 、这节课主要学习了两个知识点: 1、圆周角定义。 2、圆周角定理及其定理应用。 二、方法上主要学习了圆周角定理的证明渗透了“特殊到一般”的思想方法和分类讨论的思想方法。,五、总结扩展:,三、圆周角及圆周角定理的应用极其广泛,也是中考的一个重要考点,望同学们灵活运用,2.如图(2),在O中,B,D,E的大小有什么关系? 为什么?3.如图(3),AB是直径,你能确定C的度数吗?,拓展 化心动为行动,1.如图(1),在O中,BAC=50,求C的大小.,练习: 4、AB、AC为O的两条弦,延长CA到D,使AD=AB,如果ADB=350,求BOC的度数。 5、如图,在O中,BC=2DE, BOC=84,求 A的度数。,