收藏 分享(赏)

整式的乘法以及平方差公式的练习.doc

上传人:weiwoduzun 文档编号:5705535 上传时间:2019-03-13 格式:DOC 页数:4 大小:243KB
下载 相关 举报
整式的乘法以及平方差公式的练习.doc_第1页
第1页 / 共4页
整式的乘法以及平方差公式的练习.doc_第2页
第2页 / 共4页
整式的乘法以及平方差公式的练习.doc_第3页
第3页 / 共4页
整式的乘法以及平方差公式的练习.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、单项式与单项式相乘一、选择题1.计算 的结果是( )232)(xyA. B. C. D.105x8485yx1262. 计算结果为( ))()()2(223yxA. B. 0 C. D. 6136yx36125yx3. 计算结果是( )23)18.()5.(A. B. C. D. 106306130144.计算 的结果是( ))()2(yxzxyA. B. C. D. zx6363z53zyx535.计算 的结果为( )222)()(babaA. B. C. D. 3617361836173618ba6.x 的 m 次方的 5 倍与 的 7 倍的积为( )2xA. B. C. D. 2m325

2、m2mx7. 等于( )243)()(ycxA. B. C. D. 2182143824368cyx24368cyx8. ,则 ( )93yxxynm nmA. 8 B. 9 C. 10 D.无法确定 9. 计算 的结果是( ))(32()nmA. B. C. D. mnyx43yx21nmyx23 nmyx5)(3110.下列计算错误的是( )A. B.1232)(aa 74322)()(baabC. D.218nnnyxyx 3zyxzyx二、填空题:1. ._)(2xa2. 352_yx3. .)()3(34xy4. _216abc5. .)(4)(52336.151nnyx7. ._)

3、2()23m三、解答题1.计算下列各题(1) (2))8(4322yzx )312)(73cba(3) (4))125.0(.3nmn )5(32)1(3yzxyz(5) (6))2.1()5.()31yxax 322)()5.0(xyxy2、已知: ,求代数式 的值.81,4yx 52241)(71xyx3、已知: ,求 m.69327m单项式与多项式相乘一、选择题1化简 的结果是( )2(1)()xxA B C D3321x31x2化简 的结果是( )()()()abcacbA B2cC D 23如图 142 是 L 形钢条截面,它的面积为( )Aac+bc Bac+(b-c)cC(a-c

4、)c+(b-c)c Da+b+2c+(a-c)+(b-c)4下列各式中计算错误的是( )A B3422(1)6xxx232(1)bbC D231 343xxx5 的结果为( )(6)(3ababA B2 32256abC D3226abab二、填空题1 。2()1)x2 。3248(x3 。2()abab4 。32)(5xx5 。228(4)mm6 。713(31xxx7 。223()aba9当 t1 时,代数式 的值为 。2()ttt三、解答题1计算下列各题(1) (2)1()()()326abab3222211()()()34xyxyxyz(3) (4)22311()()3xyxy 321

5、2()4abb四、探索题:1先化简,再求值,其中 。22(69)(815)2(3)xxx16x2已知 ,25(20)mn求 的值。2()3(653(45)mn3解方程: 2(25)()6xx4已知:单项式 M、N 满足 ,求 M、N。22(3)6xxy多项式与多项式相乘一、选择题1. 计算(2a3b)(2a3b)的正确结果是( )A4a 29b 2 B4a 29b 2 C4a 212ab9b 2 D4a 212ab9b 22. 若(xa)( xb)x 2kxab,则 k 的值为( ) Aab Bab Cab Dba3. (x2px3)(xq)的乘积中不含 x2 项,则( )Apq Bpq Cp

6、q D无法确定4. 若 0x 1,那么代数式 (1x )(2x)的值是( )A一定为正 B一定为负 C一定为非负数 D不能确定二、填空题1. (3x1)( 4x5)_ 2. (4xy)(5x2y)_3. 若(xa)( x2)x 25xb,则 a_ ,b_4. 若 a2a12,则(5a)(6a)_5. 当 k_ 时,多项式 x1 与 2kx 的乘积不含一次项四、探究创新乐园1、根据(x a)(xb)x 2(ab)xab,直接计算下列题(1)(x4)(x9) (2)(xy 8a)(xy2a).五、数学生活实践一块长 acm,宽 bcm 的玻璃,长、宽各裁掉 1 cm 后恰好能铺盖一张办公桌台面(玻

7、璃与台面一样大小),问台面面积是多少?一、基础训练1下列运算中,正确的是( )A (a+3) (a-3)=a 2-3 B (3b+2) (3b-2)=3b 2-4C (3m-2n) (-2n-3m)=4n 2-9m2 D (x+2) (x-3)=x 2-62在下列多项式的乘法中,可以用平方差公式计算的是( )A (x+1) (1+x) B ( a+b) (b- a)1C (-a+b) (a-b) D (x 2-y) (x+y 2)3对于任意的正整数 n,能整除代数式(3n+1) (3n-1)-(3-n) (3+n)的整数是( )A3 B6 C10 D91平方差公式(a+b) (a b)=a 2

8、b 2 中字母 a,b 表示( )A只能是数 B只能是单项式 C只能是多项式 D以上都可以2下列多项式的乘法中,可以用平方差公式计算的是( )A (a+b) (b+a) B (a+b) (ab)C ( a+b) (b a) D (a 2b ) (b 2+a)133下列计算中,错误的有( )(3a+4) (3a 4)=9a 24;(2a 2b) (2a 2+b)=4a 2b 2;(3x) (x+3)=x 29;(x+y )(x+y)=(xy) (x+y)=x 2y 2A1 个 B2 个 C3 个 D4 个4若 x2y 2=30,且 xy= 5,则 x+y 的值是( )A5 B6 C6 D5二、填空题5 (2x+y) (2xy)=_6 (3x 2+2y2) (_)=9x 44y 47 (a+b1) (a b+1)=(_) 2(_) 28两个正方形的边长之和为 5,边长之差为 2,那么用较大的正方形的面积减去较小的正方形的面积,差是_三、计算题10计算:(a+2) (a 2+4) (a 4+16) (a2) (2+1) (2 2+1) (2 4+1)(2 2n+1)+1(n 是正整数) ;2 (一题多变题)利用平方差公式计算:200920072008 2 (1) (2a-3b) (2a+3b) ; (2) (-p 2+q) (-p2-q) ;

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报