1、4.3 直角三角形及其应用一教学目标(一)知识目标致使学生懂得什么是横断面图,能把一些较复杂的图形转化为解直角三角形的问题(二)能力目标逐步培养学生分析问题、解决问题的能力(三)情感目标培养学生用数学的意识;渗透转化思想;渗透数学来源于实践又作用于实践的观点二、教学重点、难点1重点:把等腰梯形转化为解直角三角形问题;2难点:如何添作适当的辅助线三、教学过程1出示已准备的泥燕尾槽,让学生有感视印象,将其横向垂直于燕尾槽的平面切割,得横截面,请学生通过观察,认识到这是一个等腰梯形,并结合图形,向学生介绍一些专用术语,使学生知道,图中燕尾角对应哪一个角,外口、内口和深度对应哪一条线段这一介绍,使学生
2、对本节课内容很感兴趣,激发了学生的学习热情2例题例 燕尾槽的横断面是等腰梯形,图 6-26 是一燕尾槽的横断面,其中燕尾角 B 是 55,外口宽 AD 是 180mm,燕尾槽的深度是 70mm,求它的里口宽 BC(精确到 1mm)分析:(1)引导学生将上述问题转化为数学问题;等腰梯形 ABCD 中,上底 AD=180mm,高 AE=70mm,B=55,求下底 BC(2)让学生展开讨论,因为上节课通过做等腰三角形的高把其分割为直角三角形,从而利用解直角三角形的知识来求解学生对这一转化有所了解因此,学生经互相讨论,完全可以解决这一问题例题小结:遇到有关等腰梯形的问题,应考虑如何添加辅助线,将其转化
3、为直角三角形和矩形的组合图形,从而把求等腰梯形的下底的问题转化成解直角三角形的问题3巩固练习如图 6-27,在离地面高度 5 米处引拉线固定电线杆,拉线和地面成 60角,求拉线 AC 的长以及拉线下端点 A 与杆底 D 的距离 AD(精确到 0.01 米)分析:(1)请学生审题:因为电线杆与地面应是垂直的,那么图 6-27 中ACD 是直角三角形其中 CD=5m,CAD=60,求 AD、AC 的长(2)学生运用已有知识独立解决此题教师巡视之后讲评(三)小结请学生作小结,教师补充本节课教学内容仍是解直角三角形,但问题已是处理一些实际应用题,在这些问题中,有较多的专业术语,关键是要分清每一术语是指哪个元素,再看是否放在同一直角三角形中,这时要灵活,必要时还要作辅助线,再把问题放在直角三角形中解决在用三角函数时,要正确判断边角关系四、布置作业全 品中考网