1、3、2 图形的全等教学目标:1.借助具体情境和图案,经历观察、发现和实践操作重叠图形等过程,了解图形全等的意义,了解全等图形的特征。2.掌握全等三角形对应边相等、对应角相等的性质,并能进行简单的推理计算。教学重点:1.图形的全等与全等图形的特征的了解是本节课的重点,识别全等图形及通过实践活动得出全等力形既是重点也是难点。2、会看图,会找到三角形的对应边、对应角。3、掌握全等三角形的对应边相等、对应角相等的性质。教学难点:找全等三角形的对应边、对应角。教学方法:实践操作法和观察法教学过程:一、 看一看1观察课本两组图形。2多举一些比较熟悉的能全等或不全等图形的实例,进行想象全等力形与不全等图形的
2、区别。例如:(1) 同一张底片冲印出两张相同尺寸的相片与两张不同尺寸的相片。(2) 同一人的两只手掌与一大人左手掌和一小孩的左手掌。(3) 一个三角形和一个四边形3把下列两组图形投影出来:(1)(2)通过观察,说出两组图形中上、下两个图形的异同之处,与同学交流你的看法。一、做一做1.用复写纸印出任一封闭图形。2.把两张纸叠在一起,用剪子随意剪出一个图形。二、议一议1.从“做一做”中得到的两个图形有什么特征?这两个图形能够重合,它们的形状和大小都相同。2.在看一看中,你的看法如何?形状相同且大小也相同的两个图形能够重合,反之亦然。形状不同或大小不同的两个图形不能重合,不能重合的两个图形大小一定不
3、相同。3.能够重合的两个图形称为全等图形。全等图形的形状和大小都相同一、实验活动:找出图画中全等的图形,从而引出全等三角形的定义及性质1全等三角形的定义及有关概念和性质(1)定义:全等三角形是能够完全重合的两个三角形或形状相同、大小相等的两个三角形(2)反例:举出不全等的三角形的例子,利用教师和学生手中的含30角的三角板说明只满足形状相同的两个图形不是全等形,强调定义的条件(3)对应元素及性质:说明对应元素(顶点、边、角)的含义,并引导学生观察全等三角形中对应元素的关系,发现对应边相等,对应角相等教师启发学生根据“重合”来说明道理2学习全等三角形的符号表示及读法和写法:解释“”的含义和读法,并
4、强调对应顶点写在对应位置上举例说明:如图, ABCDFE,(已知)AB=DF,AC=DE,BC=FE,(全等三角形的对应边相等)A=D,B=F,C=E(全等三角形的对应角相等)小结:在书写全等三角形时,如果将对应顶点写在对应位置上,那么,将两个三角形的顶点同时按1231的顺序轮换,可写出所有对应边和对应角相等的式子,而不会找错,并节省观察图形的时间二、总结寻找全等三角形对应元素的方法,渗透全等变换的思想(1) 全等用符号_表示.读作_.(2) 三角形 ABC 全等于三角形 DEF,用式子表示为_(3) 已知ABC 和ABC中,A=A,B=BC=C;AB=AB,BC=BC,AC=AC.则ABC_
5、ABC.(4) 如右图ABCBCD,A 的对应角是D,B 的对应角E,则C 与_是对应角;AB 与_是对应边, BC 与_是对应边,AC 与_是对应边. (5)判断题:全等三角形的对应边相等,对应角相等.( )全等三角形的周长相等.( )面积相等的三角形是全等三角形.( )全等三角形的面积相等.( )三、性质应用举例1性质的基本应用例1 已知:ABCDFE,A=96,B=25,DF=10cm求E的度数及AB的长例2 如图,已知CDAB于D,BEAC于E,ABEACD,C= 20,AB=10,AD= 4, G为AB延长线上一点求EBG的度数和CE的长分析:(1)图中可分解出四组基本图形:有公共角
6、的RtACD和RtABE;ABEACD,ABE的外角EBG或ABE的邻补角EBG(2)利用全等三角形的对应角相等性质及外角或邻补角的知识,求得EBG等于160(3)利用全等三角形对应边相等的性质及等量减等量差相等的关系可得:CE=CA-AE=BA-AD=6小 结:1学生回忆这节课:在自己动手实际操作中,得到了全等三角形的哪些知识?(1)全等三角形的定义、判断方法、性质(2)找全等三角形对应元素的方法注意挖掘图形中隐含的条件,如公共元素、对顶角等,但公共顶点不一定是对应顶点2在运用全等三角形的定义和性质时应注意什么问题?教师应强调全等三角形及性质的规范书写格式3了解全等变换的思想,更好地识别全等三角形及对应元素