1、1“哥德巴赫猜想”讲义(第 13 讲)“哥德巴赫猜想”证明(8 )主讲 王若仲第 12 讲我们讲解了核心部分的定理 2,这一讲我们讲核心部分的定理 3。定理 3:对于任何一个比较大的偶数 2m,设奇素数p1,p 2,p 3,p t均为不大于2m 的全体奇素数( pi pj ,ij,i、j=1,2,3,t) ,tN,且偶数 2m 均不含有奇素数因子 p1,p 2,p 3,p t;那么集合p1,2p 1,3p1,4p 1,5p 1,m 1p1p 2,2p 2,3p2,4p 2,5p 2,m 2p2p 3,2p 3,3p3,4p 3,5p 3,m 3p3p t,2p t,3pt,4p t,5p t,
2、m tpt中正整数的总个数与集合p1,2p 1,3p1,4p 1,5p 1,m 1p1p 2,2p 2,3p2,4p 2,5p 2,m 2p2p 3,2p 3,3p3,4p 3,5p 3,m 3p3p r,2p r,3pr,4p r,5p r,m rpr( 2m-pr+1) , (2m-2pr+1),(2m-3p r+1) , (2m-4p r+1) , (2m-5p r+1) , , (2m-m r+1pr+1)(2m-p r+2) , (2m-2p r+2),(2m-3p r+2) , (2m-4p r+2) , (2m-5p r+2) , (2m-m r+2pr+2)(2m-p r+3)
3、 , (2m-2p r+3) ,(2m-3p r+3) , (2m-24pr+3) , (2m-5p r+3) , (2m-m r+3pr+3)(2m-p t) , (2m-2pt),(2m-3p t) , (2m-4p t) , (2m-5p t) , (2m-m tpt)中正整数的总个数相等。其中 m1p1为对应的集合情形下不大于偶数 2m 的最大正整数,m 2p2为对应的集合情形下不大于偶数 2m 的最大正整数,m3p3为对应的集合情形下不大于偶数 2m 的最大正整数,m tpt为对应的集合情形下不大于偶数 2m 的最大正整数。证明:对于集合(2m-p r+1) , (2m-2p r+1
4、),(2m-3p r+1) , (2m-4pr+1) , (2m-5p r+1) , (2m-m r+1pr+1),我们令 2m-mr+1pr+1=hr+1,因为 mr+1pr+1为对应的集合情形下不大于偶数 2m 的最大正整数,显然 hr+1p r+1,则 2m-(m r+1-1)p r+1=2m-mr+1pr+1+pr+1=pr+1+hr+1,2m-(m r+1-2)p r+1=2m-m r+1p r+1+2pr+1=2pr+1+hr+1, (2m-2p r+1)= 2m-m r+1-( m r+1-2) pr+1=(m r+1-2)p r+1+2m-m r+1pr+1=(m r+1-2)
5、pr+1+hr+1, (2m-p r+1)=2m-m r+1-(m r+1-1)p r+1 =(m r+1-1)p r+1+2m-mr+1pr+1 =(m r+1-1)p r+1+hr+1;那么集合 (2m-p r+1) , (2m-2p r+1), (2m-3p r+1) , (2m-4p r+1) , (2m-5p r+1) , (2m-m r+1pr+1)=(p r+1-kr+1) , (2p r+1-kr+1) , (3p r+1-kr+1) ,(m r+1-1)p r+1-kr+1,(m r+1pr+1-kr+1)= hr+1, (p r+1+hr+1) , ( 2pr+1+hr+1
6、) ,(m r+1-2)p r+1+hr+1,(m r+1-1)p r+1+hr+1;我们令 2m-mr+2p r+2=hr+2;2m-mr+3pr+3=hr+3;2m-m tpt=ht;同理可得:集合(2m-p r+2) , (2m-2pr+2),(2m-3p r+2) , (2m-4p r+2) , (2m-5p r+2) , (2m-m r+2pr+2)= hr+2, (p r+2+hr+2) , (2p r+2+hr+2) , ,(m r+2-2)p r+2+hr+2,(m r+2-1)p r+2+hr+2;集合(2m-p r+3) , (2m-2p r+3),(2m-3p r+3)
7、,3(2m-4p r+3) , (2m-5p r+3) , (2m-m r+3pr+3)= hr+3, (p r+3+hr+3) ,(2p r+3+hr+3) ,(m r+3-2)p r+3+hr+3,(m r+3-1)p r+3+hr+3;集合(2m-p t) , (2m-2p t),(2m-3p t) , (2m-4p t) , (2m-5p t) , (2m-m tpt)= ht, (p t+ht) , (2p t+ht) ,(m t-2)p t+ht,(m t-1)p t+ht。因为前面令 2m-mr+1pr+1=hr+1,2m-m r+2p r+2=hr+2;2m-mr+3pr+3=
8、hr+3;2m-m tpt=ht。那么有 2mh r+1(modp r+1) ,2mh r+2(modp r+2) ,2mh r+3(modp r+3) ,2mh t(modp t) ;所以集合(2m-p r+1) , (2m-2p r+1),(2m-3p r+1) , (2m-4p r+1) , (2m-5p r+1) , (2m-m r+1pr+1)对应同余方程 xr+1h r+1(modp r+1) ;集合(2m-pr+2) , (2m-2p r+2),(2m-3p r+2) , (2m-4p r+2) , (2m-5p r+2) , (2m-mr+2pr+2)对应同余方程 xr+2h
9、r+2(modp r+2) ;集合(2m-p r+3) ,(2m-2p r+3),(2m-3p r+3) , (2m-4p r+3) , (2m-5p r+3) , (2m-mr+3pr+3)对应同余方程 xr+3h r+3(modp r+3) ;集合(2m-p t) ,(2m-2p t),(2m-3p t) , (2m-4p t) , (2m-5p t) , (2m-m tpt)对应同余方程 xth t(modp t) 。由孙子高斯定理可知,同余方程组 xh i(modp i) (i= r+1, r+2, r+3,,t)有无穷多解 ,且这些解关于模 M=pr+1pr+2p r+3pt同余,因
10、为(p 1p2p3pr,p r+1pr+2p r+3pt) =1,由同余性质定理 1 可知,同余方程组 xh i(modp i) (i= r+1, r+2, r+3,,t)的任一解与 p1p2p3pr的乘积关于模 M=p1p2p3prpr+1pr+2p r+3pt同余,又因为偶数 2m 是同余方程 xh r+1(modp r+1)的解, 偶数 2m 也是同余4方程 xh r+2(modp r+2)的解,偶数 2m 也是同余方程 xh r+3(modp r+3)的解,偶数 2m 也是同余方程 xh t(modp t)的解;那么偶数 2m 也是同余方程组 xh i(modp i) (i= r+1,
11、 r+2, r+3,,t)的一个解;在偶数 2m 范围内,同余方程组 xh i(modp i) (i= r+1, r+2, r+3,,t)的所有解对应集合 h, (p r+1pr+2p r+3pt+h) , (2p r+1pr+2p r+3pt+h) , (3p r+1pr+2p r+3pt+h) ,(v-2)p r+1pr+2p r+3pt,+h,(v -1)pr+1pr+2p r+3pt+h,其中 vpr+1pr+2p r+3pt为不大于偶数 2m 的最大正整数。显然集合 h, (p r+1pr+2p r+3pt+h) , (2p r+1pr+2p r+3pt+h) , (3p r+1pr
12、+2p r+3pt+h) ,(v-2)p r+1pr+2p r+3pt,+h,(v -1)p r+1pr+2p r+3pt+h 对应同余方程wh(modp r+1pr+2p r+3pt) 。我们设集合p 1,2p 1,3p1,4p 1,5p 1,m 1p1p 2,2p 2,3p2,4p 2,5p 2,m 2p2p 3,2p 3,3p3,4p 3,5p 3,m 3p3p r,2p r,3pr,4p r,5p r,m rpr(2m-p r+1) , (2m-2pr+1), ( 2m-3pr+1) , (2m-4p r+1) , (2m-5p r+1) , (2m-m r+1pr+1)(2m-p r
13、+2) , (2m-2p r+2), (2m-3p r+2) , (2m-4p r+2) , (2m-5p r+2) , (2m-m r+2pr+2)(2m-p r+3) , (2m-2p r+3), (2m-3p r+3) , (2m-4pr+3) , (2m-5p r+3) , (2m-m r+3pr+3)(2m-p t) , (2m-2pt),(2m-3p t) , (2m-4p t) , (2m-5p t) , (2m-m tpt)中的任一奇数均对应同余方程 ye(modp 1p2p3prpr+1pr+2p r+3pt)的一个解,5对于同余方程 ye(modp 1p2p3prpr+1p
14、r+2p r+3pt) ,e 为小于p1p2p3pt的正整数,因为同余方程组 xh i(modp i) (i= r+1, r+2, r+3,,t)的任一解与 p1p2p3pr的乘积关于模M=p1p2p3prpr+1pr+2p r+3pt同余,由同余性质定理 1 可知,e=p1p2p3prh,根据前面得到的同余方程 wh(modp r+1pr+2p r+3pt) ,我们再设同余方程 zh(modp 1p2p3prpr+1pr+2p r+3pt) ,那么在偶数 2m 范围内,同余方程 zh(modp 1p2p3prpr+1pr+2p r+3pt)的所有解对应的集合为 h, (p 1p2p3prpr
15、+1pr+2p r+3pt+h) , (2p 1p2p3prpr+1pr+2p r+3pt+h) , (3p 1p2p3prpr+1pr+2p r+3pt+h) ,(u-2)p 1p2p3prpr+1pr+2p r+3pt+h,(u-1)p1p2p3prpr+1pr+2pr+3pt+h,其中 up1p2p3prpr+1pr+2p r+3pt为不大于偶数 2m 的最大正整数;显然p1p2p3prhp 1p2p3prpr+1pr+2p r+3pt,而 e=p1p2p3prh,所以在偶数 2m 范围内,同余方程 ye(modp 1p2p3prpr+1pr+2p r+3pt)的所有解对应的集合为 e,
16、 (p 1p2p3prpr+1pr+2p r+3pt+e) ,(2p 1p2p3prpr+1pr+2p r+3pt+e) , (3p 1p2p3prpr+1pr+2p r+3pt+ e) ,(u-2)p 1p2p3prpr+1pr+2p r+3pt+e,(u-1)p1p2p3prpr+1pr+2pr+3pt+e,显然(u-1)p1p2p3prpr+1pr+2pr+3pt+p1p2p3prh2m。所以 e 对应p1p2p3ptu, (p 1p2p3pt+e)对应 p1p2p3pt(u-1) ,(2p 1p2p3pt+e)对应 p1p2p3pt(u-2) , (3p 1p2p3pt+e)对应p1p
17、2p3pt(u-3) ,(u-1)p 1p2p3pt+e对应 p1p2p3pt。故集6合p 1,2p 1,3p1,4p 1,5p 1,m 1p1p 2,2p 2,3p2,4p 2,5p 2,m 2p2p 3,2p 3,3p3,4p 3,5p 3,m 3p3p t,2p t,3pt,4p t,5p t,m tpt中正整数的总个数与集合p1,2p 1,3p1,4p 1,5p 1,m 1p1p 2,2p 2,3p2,4p 2,5p 2,m 2p2p 3,2p 3,3p3,4p 3,5p 3,m 3p3p r,2p r,3pr,4p r,5p r,m rpr(2m-p r+1) , (2m-2pr+1
18、), (2m-3p r+1) , (2m-4p r+1) , (2m-5p r+1) , (2m-m r+1pr+1)(2m-p r+2) , (2m-2p r+2), (2m-3p r+2) , (2m-4p r+2) , (2m-5p r+2) , (2m-m r+2pr+2)(2m-p r+3) , (2m-2p r+3), (2m-3p r+3) , (2m-4pr+3) , (2m-5p r+3) , (2m-m r+3pr+3)(2m-p t) , (2m-2pt),(2m-3p t) , (2m-4p t) , (2m-5p t) , (2m-m tpt)中正整数的总个数相等。故定理 3 成立。参考文献1戎士奎,十章数论(贵州教育出版社)1994年9月第1版2闵嗣鹤,严士健,初等数论(人民教育出版社)1983年2月第6版3刘玉琏,付沛仁,数学分析(高等教育出版社)1984年3月第1版4王文才,施桂芬,数学小辞典(科学技术文艺出版社)1983 年 2 月第 1 版二一四年四月十九日