1、谈数学史中的课堂价值【内容摘要】 美妙的故事是人们喜闻乐见的世界语,学习的动力不仅源自于规律的神奇,亦源于先驱者的各种传奇,数学解题有时只是一种娱乐,精彩的数学家的人文故事,既拉近了与学生的心理距离,更让学生树立了健康的科研观,。【关键词】数学史 世界语 传奇 兴趣 感悟不断在教学上探索创新,以提高学生对学科的兴趣,这是现阶段教育研究想努力突破的瓶口。而在数学的实际教学中,提高学生兴趣却有的一条有效的老路,那就是会讲数学史的故事充份认识数学史的课堂价值,让好奇在学生心灵中不断绽放,让探索者的高贵品质渗透求知者的灵魂,这就是数学故事的课堂价值。以下是对数学史在教学中应用的浅谈。美妙的故事是人们最
2、喜闻乐见的世界语,也是干枯的历史藤络上的最艳美的花朵。众所皆知,哥白尼是死于日心说,那么,有没有数学家因真理而亡呢?笔者曾向学生讲述数学家希巴斯的故事伟大的贵族毕达哥拉斯认为,世界上只存在两种数-整数与分数,而分数即是两个整数的比,两种数统称有理数也就是说,他认为除了有理数以外,不可能存在另类的数。首先发现无理数的著名数学家希巴斯,就是毕达哥拉斯的一位学生。他惊讶地发现边长为 1 的正方形,其对角线长度不可能是整数或分数。这让毕达哥拉斯大吃一惊,因为无法接受存在“另类数”的事实,他要求学生严守秘密。可希巴斯坚持真理,并将发现公诸于众,行动很勇敢结果很悲惨,希巴斯被怒不可遏的哥派门徙们掷进了大海
3、。故事帮助学生们牢记了整数和分数就是有理数,无理数则是无限不循环的小数的定义。学习的动力不仅源于规律的神奇,亦源自先驱们的各种传奇。如能穿越时空,回到两千多年前的埃及,我们都能获得法老的黄金大奖,这又是什么故事?巨富又巨无聊的古埃及法老想知道它的金字塔到底有多高,埃及人全然无解,法老因此设立了黄金大奖。一个希腊的女数学家赢了奖金,她计算塔高的方法很简单杆高:杆影长=塔高:塔影长,只要有阳光就行了。这个故事能帮助学生迅速理解了成比例线段的概念。苏霍姆林斯基认为,人类认知过程的本身,就是一个激发兴趣,最令人惊叹的奇异过程,美妙的故事不应省略不讲,略而不讲是剥夺学生的真正乐趣。勾股定理在西方称为毕达
4、哥拉斯定理。勾股定理也称作百牛定理。传说毕达哥拉斯是客厅散步时发现的勾股定理,他本人当时也惊呆了,以为自己发现了神创造自然规律的秘密,因而激动万分,决定杀一百头牛来祭神并大宴众宾,故勾股定理也被称为百牛定理。故事能让学生们入迷,还能让他们津津有味地重演定理的发现过程。数学掌故会告诉学生,研究问题有时和下棋打牌一样,也是一种娱乐。在八零年的高考题中,有一道要求证明勾股定理的考题。实际上,勾股定理的证明方法繁多,有纪录的就有两百多种,其中最富传奇色彩的是美国总统 Garfield 的证明方法,据说是他在白宫花园中喝下午茶时发现的,这种方法成了现在数学课本上的一道习题解数学题一向是Garfield
5、总统繁忙公务之余的消遣,据说爱因斯坦也有同样的爱好,目的是防止大脑提前老化,保持思维的敏捷性。讲授直角坐标系的应用时,不能不提发明人笛卡尔的故事,据说是他在观看苍蝇受困蛛网的现象时,灵感乍现发明了直角坐标系,这使得运动进入了数学,古典数学完成了现代数学的华丽转身,他也因此被尊为现代数学之父。笛卡尔一生对人类社会有许多的贡献,但最重要的是在数学方面。例如:他是第一个使用开头的一些字母表示常量,用靠近结尾的一些字母表示变量的。我们所熟悉的代数中的 x、y 就是来出自笛卡尔。关于数学概率也有精采的故事二次大战时,美国用大量的海船往欧洲运送战略物资,却遭到德国海军潜艇的袭击,损失惨重。美国军方请了数学
6、家帮忙计算海船与潜艇相遇的概率,发现如果运送物资的海船集中分时段航行,而不是随机出航,就能大大降低被潜艇发现的概率。数学家的计算,帮助盟军大大减少损失,加速了纳粹帝国的覆灭。在课堂教学中,兴趣会让学生们全身心的投入,从而大大提升听课效率。学生之所以对数学有点麻木不仁,一是教学内容相对枯燥了,即使是有一些生活化的问题也远离学生的兴趣点;二就是学生畏难的情绪,数学太难了,数学家简直是神人,怎能想出这么高深的东西?因此,教师可以用精彩的人文故事,将数学家拉近他们的同时,又给畏难的学生树立的信心,也建立了正确的科研观。当学生们知道,函数的简单概念并非是天生的,大数学家欧拉曾先后给出了三个定义,但没一个揭示了函数的本质。大数学家也这样搞笑啊?这足以极大地增强学生的自信心。数学圣殿的矗立非朝夕之功,无数大家都是从无知到博学,奋斗终身才有所成就对学生来讲,对人格品质的感悟,比理解一个概念或一个定理更富有价值,这就是数学史的课堂价值!教师们不必抱怨数学科的枯燥乏味,金庸小说的魅力不在于高深的武功秘籍和神秘的独家练气法,而是在于作者笔下的传奇故事以及侠之大者的迷人魅力。永远不要忘记激发学生的兴趣,金庸妙笔下的黄容小龙女,她们伴随的不是大侠郭靖和杨过大侠,而是我们这此少趣寡乐的读者们。参考文献:1 古今数学思想M克莱因2 数学大师启示录 陈诗谷 葛孟曾3 给教师的建议苏霍姆林斯基