第 7 课时二元一次不等式组表示的平面区域【学习导航】 知识网络 学习要求 1.理解二元一次不等式组表示平面区域的含义,并能准确地作出二元一次不等式组表示的平面区域,还能处理一些逆向问题2.学会解决一些简单的整点问题【课堂互动】自学评价不等式组表示的平面区域 各不等式表示平面区域的公共部分 .整点: 坐标都是整数的点 .【精典范例】例 1画出下列不等式组所表示的区域(1) 214yx+(2) 038yx+-0图略2.如图所示阴影部分可用二元一次不等式组表示 ( )A. 120yx-+B. y-C. 024xy-+D. 20xy-例 3 利用平面区域求不等式组的整230651xy-+数解.解:法一:画区域后作网格线而知其解 为(,) , (,) ,(,) , (,) 法二:画区域后求最左最右边界点的横 坐标得 ,故整19750x数 x=0,1,2,3.将 x=0,1,2,3 分别代人原不等式组 求出整数 y 即可 (以下略)思维点拔:方法一:(1)画区域(2) 求交点(3)通过定 x 的范围来确定整数 x(4)再通过 x 的整数值来定 y 的整数值方法二:(1)画区域(2) 打网格线(3) 特殊点 验证yx2-1-2 y=-2听课随笔【师生互动】学生质疑教师释疑追踪训练在坐标平面上, 不等式组 所表示的平面区域内整数点个数为 ()13|yx-+A. B. C. D.