1、新课标人教版课件系列,高中数学必修5,3.4.1基本不等式 -均值不等式,教学目标,推导并掌握两个正数的算术平均数不小于它们的几何平均数这个重要定理;利用均值定理求极值。了解均值不等式在证明不等式中的简单应用。教学重点: 推导并掌握两个正数的算术平均数不小于它们的几何平均数这个重要定理;利用均值定理求极值。了解均值不等式在证明不等式中的简单应用。,证明:,1指出定理适用范围:,2强调取“=”的条件:,定理:,如果a, bR+,那么,证明:,即:,当且仅当a=b时,均值定理:,注意:1适用的范围:a, b 为非负数.,2语言表述:两个非负数的算术平均数不小于它们的几何平均数。,看做正数a,b的等
2、比中项,,那么上面不等式可以叙述为:,两个正数的等差中项不小于它们的等比中项。,还有没有其它的证明方法证明上面的基本不等式呢?,几何直观解释:,令正数a,b为两条线段的长,用几何作图的方法,作出长度为 和 的两条线段,然后比较这两条线段的长。,具体作图如下:,(1)作线段AB=a+b,使AD=a,DB=b,(2)以AB为直径作半圆O;,(3)过D点作CDAB于D,交半圆于点C,(4)连接AC,BC,CA,则,当ab时,OCCD,即,当a=b时,OC=CD,即,例1已知ab0,求证: ,并推导出式中等号成立的条件。,证明:因为ab0,所以 , 根据均值不等式得,即,当且仅当 时,即a2=b2时式
3、中等号成立,,因为ab0,即a,b同号,所以式中等号成立的条件是a=b.,例2(1)一个矩形的面积为100m2,问这个矩形的长、宽各为多少时,矩形的周长最短?最短周长是多少? (2)已知矩形的周长是36m,问这个矩形的长、宽各为多少时,矩形的面积最大?最大面积是多少?,分析:在(1)中,矩形的长与宽的乘积是一个常数,求长与宽的和的2倍的最小值; 在(2)中,矩形的长与宽的和的2倍是一个常数,求长与宽的乘积的最大值。,解:(1)设矩形的长、宽分别为x(m),y(m),依题意有xy=100(m2),,因为x0,y0,所以,,因此,即2(x+y)40。,当且仅当x=y时,式中等号成立, 此时x=y=
4、10。,因此,当这个矩形的长与宽都是10m时,它的周长最短,最短周长是40m.,(2)设矩形的长、宽分别为x(m),y(m), 依题意有2(x+y)=36,即x+y=18,,因为x0,y0,所以,,因此,将这个正值不等式的两边平方,得xy81,当且仅当x=y时,式中等号成立, 此时x=y=9,,因此,当这个矩形的长与宽都是9m时,它的面积最大,最大值是81m2。,规律:,两个正数的积为常数时,它们的和有最小值;,两个正数的和为常数时,它们的积有最大值。,例3求函数 的最大值,及此时x的值。,解: ,因为x0,,所以,得,因此f(x),当且仅当 ,即 时,式中等号成立。,由于x0,所以 ,式中等
5、号成立,,因此 ,此时 。,下面几道题的解答可能有错,如果错了,那么错在哪里?,已知函数 ,求函数的最小值和此时x的取值,运用均值不等式的过程中,忽略了“正数”这个条件,已知函数 , 求函数的最小值,用均值不等式求最值,必须满足“定值”这个条件,用均值不等式求最值,必须注意 “相等” 的条件. 如果取等的条件不成立,则不能取到该最值.,1.已知x0, y0, xy=24, 求4x+6y的最小值,并说明此时x,y的值,4 已知x0,y0,且x+2y=1,求 的最小值,2 已知a+b=4,求y=2a+2b的最小值,练习题:,当x=6,y=4时,最小值为48,最小值为8,3.已知x0,求函数 的最大值.,再见,