1、第3章,资金的时间价值,资金的时间价值,利率单利复利贷款的分期偿还,很显然, 是今天的¥10,000. 你已经承认了 资金的时间价值!,利率,对于 今天的¥10,000 和5年后的 ¥10,000,你将选择哪一个呢?,若眼前能取得¥10000,则我们就有一个用这笔钱去投资的机会,并从投资中获得 利息.,Why TIME?,为什么在你的决策中都必须考虑 时间价值?,利息,复利不仅借(贷)的本金要支付利息,而且前期的利息在下一期也计息.,单利 只就借(贷)的原始金额或本金支付利息,单利公式,公式 SI = P0(i)(n) SI: 单利利息P0: 原始金额 (t=0)i: 利率n: 期数,SI =
2、 P0in = ¥1,0000. 072 = 140,单利Example,假设投资者按 7% 的单利把¥1,000 存入银行 2年. 在第2年年末的利息额是多少?,FV = P0 + SI =¥1,000 +¥140 =¥1,140 终值FV 现在的一笔钱或一系列支付款按给定的利率计算所得到的在某个未来时间点的价值.,单利 终值(FV),单利 Future Value (FV) 是多少?,PV 就是你当初存的¥1,000 原始金额. 是今天的价值! 现值PV 未来的一笔钱或一系列支付款按给定的利率计算所得到的在现在的价值.,单利 现值(PV),前述问题的现值 (Present Value,PV
3、) 是多少?,复利?,假设投资者按7%的复利把¥1,000 存入银行 2 年,那么它的复利终值是多少?,复利终值,0 1 2,$1,000,FV2,7%,FV1 = P0 (1+i)1 =¥1,000 (1.07) =¥1,070 复利 在第一年年末你得了¥70的利息.这与单利利息相等.,复利公式,FV1 = P0 (1+i)1 = 1,000 (1.07) = 1,070 FV2 = FV1 (1+i)1 = P0 (1+i)(1+i) = 1,000(1.07)(1.07) = P0 (1+i)2 = 1,000(1.07)2 = 1,144.90 在第2年你比单利利息多得 4.90.,复
4、利公式,FV1 = P0(1+i)1FV2 = P0(1+i)2FV 公式:FVn = P0 (1+i)n or FVn = P0 (FVIFi,n) - 见表 I,一般终值公式,etc.,FVIFi,n 在书后可以查到.,查表计算 I,FV2 = 1,000 (FVIF7%,2) = 1,000 (1.145) = 1,145 四舍五入,查表计算,按10% 的复利把¥10,000存入银行, 5年后的终值是多少?,Example,0 1 2 3 4 5,$10,000,FV5,10%,查表 : FV5 = 10,000 (FVIF10%, 5) = 10,000 (1.611) = 16,11
5、0 四舍五入,解:,用一般公式: FVn = P0 (1+i)n FV5 = 10,000 (1+ 0.10)5 = 16,105.10,我们用 72法则.,想使自己的财富倍增吗!,快捷方法! ¥5,000 按12%复利,需要多久成为¥10,000 (近似.)?,近似. N = 72 / i%72 / 12% = 6 年 精确计算是 6.12 年,72法则,快捷方法! ¥5,000 按12%复利,需要多久成为¥10,000 (近似.)?,假设 2 年后你需要¥1,000. 那么现在按 7%复利,你要存多少钱?,0 1 2,$1,000,7%,PV1,PV0,复利现值,PV0 = FV2 / (
6、1+i)2 = $1,000 / (1.07)2 = FV2 / (1+i)2 = $873.44,现值公式,0 1 2,$1,000,7%,PV0,PV0 = FV1 / (1+i)1PV0 = FV2 / (1+i)2PV 公式:PV0 = FVn / (1+i)n or PV0 = FVn (PVIFi,n) - 见表 II,一般公式,etc.,PVIFi,n 在书后的表中可查到.,查表 II,PV2 = 1,000 (PVIF7%,2) = 1,000 (.873) = 873 四舍五入,查现值表,按10% 的复利,5 年后的¥10,000 的现值是多少?,Example,0 1 2
7、3 4 5,$10,000,PV0,10%,用公式: PV0 = FVn / (1+i)n PV0 = $10,000 / (1+ 0.10)5 = $6,209.21查表: PV0 = $10,000 (PVIF10%, 5) = $10,000 (.621) = $6,210.00 四舍五入,解:,年金分类,普通(后付)年金: 收付款项发生在每年 年末. 先付年金:收付款项发生在每年 年初.,年金:一定期限内一系列相等金额的收款或付款项.,年金案例,学生贷款偿还汽车贷款偿还保险金抵押贷款偿还养老储蓄,例:,某人现年45岁,希望在60岁退休后20年内(从61岁初开始)每年年初能从银行得到30
8、00元,他现在必须每年年末(从46岁开始)存入银行多少钱才行?设年利率为12%。 某人从银行贷款8万买房,年利率为4%,若在5年内还清,那么他每个月必须还多少钱才行? 教育储蓄,年金,0 1 2 3,$100 $100 $100,(普通年金第1年年末),(先付年金) 1年年初,现在,相等现金流,(先付年金) 1年年末,FVAn = R(1+i)n-1 + R(1+i)n-2 + . + R(1+i)1 + R(1+i)0,普通年金终值 - FVA,R R R,0 1 2 n n+1,FVAn,R: 每年现金流,年末,i%,. . .,FVA3 = 1,000(1.07)2 + 1,000(1.
9、07)1 + 1,000(1.07)0= 1,145 + 1,070 + 1,000 = 3,215,普通年金 - FVA例,1,000 1,000 1,000,0 1 2 3 4,3,215 = FVA3,年末,7%,1,070,1,145,FVAn = R (FVIFAi%,n) FVA3 = $1,000 (FVIFA7%,3) = $1,000 (3.215) = $3,215,查表计算 III,FVADn = R(1+i)n + R(1+i)n-1 + . + R(1+i)2 + R(1+i)1 = FVAn (1+i),先付年金 - FVAD,R R R,0 1 2 n n+1,F
10、VADn,R: 每年现金流,年初,i%,. . .,FVAD3 = $1,000(1.07)3 + $1,000(1.07)2 + $1,000(1.07)1= $1,225 + $1,145 + $1,070 = $3,440,先付年金 - FVAD例,$1,000 $1,000 $1,000 $1,070,0 1 2 3 4,FVAD3 = $3,440,年初,7%,$1,225,$1,145,FVADn = R (FVIFAi%,n)(1+i) FVAD3 = $1,000 (FVIFA7%,3)(1.07) = $1,000 (3.215)(1.07) = $3,440,查表计算 II
11、I,PVAn = R/(1+i)1 + R/(1+i)2 + . + R/(1+i)n,普通年金现值 - PVA,R R R,0 1 2 n n+1,PVAn,R: 每年现金流,年末,i%,. . .,PVA3 = 1,000/(1.07)1 + 1,000/(1.07)2 + 1,000/(1.07)3= 934.58 + 873.44 + 816.30 = 2,624.32,普通年金现值 - PVA例,1,000 1,000 1,000,0 1 2 3 4,2,624.32 = PVA3,年末,7%,934.58 873.44 816.30,PVAn = R (PVIFAi%,n) PVA
12、3 = $1,000 (PVIFA7%,3) = $1,000 (2.624) = $2,624,查表计算,PVADn = R/(1+i)0 + R/(1+i)1 + . + R/(1+i)n-1 = PVAn (1+i),先付年金现值 - PVAD,R R R,0 1 2 n n+1,PVADn,R: 每年现金流,年初,i%,. . .,PVADn = $1,000/(1.07)2 + $1,000/(1.07)1 + $1,000/(1.07)0 = $2,808.02,先付年金 - PVAD例,$1,000.00 $1,000 $1,000,0 1 2 3 4,PVADn=$2,808.
13、02,年初,7%,$ 934.58,$ 873.44,PVADn = R (PVIFAi%,n)(1+i) PVAD3 = 1,000 (PVIFA7%,3)(1.07) = 1,000 (2.624)(1.07) = 2,808,查表计算,1. 全面阅读问题 2. 决定是PV 还是FV 3. 画一条时间轴 4. 将现金流的箭头标示在时间轴上 5. 决定问题是单个的现金流、年金或混合现金流 6. 年金的现值不等于项目的现值(记不变的东西) 7. 解决问题,解决资金时间价值问题的步骤,Julie Miller 将得到现金流如下. 按10%折现的 P V是多少?,混合现金流 Example,0 1
14、 2 3 4 5,$600 $600 $400 $400 $100,PV0,10%,单个现金流,0 1 2 3 4 5,$600 $600 $400 $400 $100,10%,$545.45 $495.87 $300.53 $273.21 $ 62.09,$1677.15 = PV0,分组年金?(#1),0 1 2 3 4 5,$600 $600 $400 $400 $100,10%,$1,041.60 $ 573.57 $ 62.10,$1,677.27 = PV0 查表,$600(PVIFA10%,2) = $600(1.736) = $1,041.60 $400(PVIFA10%,2)
15、(PVIF10%,2) = $400(1.736)(0.826) = $573.57 $100 (PVIF10%,5) = $100 (0.621) = $62.10,分组年金? (#2),0 1 2 3 4,$400 $400 $400 $400,PV0 = $1677.30.,0 1 2,$200 $200,0 1 2 3 4 5,$100,$1,268.00,$347.20,$62.10,+,+,例:,某企业购买一大型设备,若货款现在一次付清需100万元;也可采用分期付款,从第二年年末到第四 年年末每年付款40万元。假设资金利率为10%,问该企业应选择何种付款方式?,方法一:选择“0”时
16、刻,分期付款好于一次付款,方法二:选择“1”时刻,方法三:选择“4”时刻,方法四:比较“A”,公式: FVn = PV0(1 + i/m)mnn: 期限 m: 每年复利次数i: 名义年利率FVn,mPV0:,复利频率,Julie Miller 按年利率12%将 $1,000 投资 2 Years. 计息期是1年 FV2 = 1,000(1+ .12/1)(1)(2) = 1,254.40 计息期是半年FV2 = 1,000(1+ .12/2)(2)(2) = 1,262.48,复利频率的影响,季度 FV2 = 1,000(1+ .12/4)(4)(2) = 1,266.77 月 FV2 = 1
17、,000(1+ .12/12)(12)(2) = 1,269.73 天 FV2 = 1,000(1+.12/365)(365)(2) = 1,271.20,复利频率的影响,10%简单年利率下计息次数与EAR之间的关系,设一年中复利次数为m, 名义年利率为i ,则有效年利率为:(1 + i / m )m - 1,有效年利率,BW公司在银行 有 $1,000 CD. 名义年利率是 6% ,一个季度计息一次 , EAR=?EAR = ( 1 + 6% / 4 )4 - 1 = 1.0614 - 1 = .0614 or 6.14%!,BWs 的有效年利率,1. 计算 每期偿还额. 2. 计算第t期偿
18、还的 利息. (第t-1 期的贷款余额) x (i% / m) 3. 计算第t期偿还的 本金.(每期偿还额 - 第2 步的利息) 4. 计算第t 期的贷款余额. (第t-1期的贷款余额- 第 3 步的本金偿还) 5. 从第2步起循环.,分期偿还贷款的步骤,Julie Miller 向银行借 $10,000, 年利率 12%. 5年等额偿还. Step 1: 每年偿还额PV0 = R (PVIFA i%,n)$10,000 = R (PVIFA 12%,5)$10,000 = R (3.605)R = $10,000 / 3.605 = $2,774,分期偿还贷款例,分期偿还贷款例,Last Payment Slightly Higher Due to Rounding,分期偿还的好处,2. 未偿还债务 获得平稳的日常现金流.,1. 利息费用 - 利息费用可减少公司的应税收入.,