收藏 分享(赏)

小学数学应用题解题策略.doc

上传人:彼岸花开 文档编号:3974937 上传时间:2018-12-02 格式:DOC 页数:27 大小:294.88KB
下载 相关 举报
小学数学应用题解题策略.doc_第1页
第1页 / 共27页
小学数学应用题解题策略.doc_第2页
第2页 / 共27页
小学数学应用题解题策略.doc_第3页
第3页 / 共27页
小学数学应用题解题策略.doc_第4页
第4页 / 共27页
小学数学应用题解题策略.doc_第5页
第5页 / 共27页
点击查看更多>>
资源描述

1、解题策略第 1 讲 假设法解题假设法是解应用题时常用的一种思维方法。在一些应用题中,要求两个或两个以上的未知量,思维时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。一、典型例题例 1、有 5 元的和 10 元的人民币共 14 张,共 100 元。问 5 元币和 10 元币各多少张?例 2、学校春游共用了 10 辆客车,已知大客车每辆坐 100 人,小客车每辆坐 60 人,大客车比小客车一共多坐 520 人,大、小客车各几辆?例 3、用大、小两种汽车运货。每辆大汽车装 18

2、 箱,每辆小汽车装 12 箱。现有 18 车货,价值 3024 元。若每箱便宜 2 元,则这批货价值 2520 元,问大、小汽车各多少辆?例 4、甲乙两人投飞镖比赛,规定每中一次计 10 分,脱靶一次倒扣 6 分。两人各投 10 次,共得 152 分。其中甲比乙多得 16 分,问两人各中多少次?例 5、有一元、二元、五元的人民币 50 张,总面值为 116 元。已知一元的比二元的多 2 张,问三种面值的人民币各有多少张?例6、有黑白棋子一堆,其中黑子个数是白子个数的2倍。如果从这堆棋子中每次取出黑子4个,白子3个,那么取了多少次后,白子余1个,而黑子余18个?例 7、箱子里有红白两种玻璃球,红

3、球数是白球数的 3 倍多 2 只,每次从箱子里取出 7 只白球、15 只红球,如果经过若干次以后,箱子里剩下 3 只白球、53 只红球,那么箱子里原有红球几只?二、习题汇编1-1. 五(1)班有 51 个同学,他们要搬 51 张课桌椅。规定男生每人搬 2 张,女生两人搬 1 张。这个班有男、女生各多少人?1-2. 营业员把一张5元的人民币和一张5角的人民币换成了28张票面为一元和一角的人民币。求换来的这两种人民币各多少张?分析:1-3. 百货公司委托搬运站送 500 只玻璃瓶,双方商定每只运费 0.24 元。如果打破一只,不但不给运费,而且还要赔偿 1.26 元,结果,搬运站共得运费 115.

4、50 元。问搬运中打破了几只?2-1.某班 42 个同学参加植树,男生平均每人种 3 课,女生平均每人种 2 课,已知男生共比女生多种 56 棵,求男、女生各多少人?2-2. 甲、乙两人共存 550 元钱,当甲取出自己存款的一半,乙取出自己存款中的三分之二时,两人余下的钱正好相等。求甲乙原来各有多少钱?3-1. 有鸡蛋 18 萝,每只大萝容 180 个,每只小萝容 120 个,这批蛋共值 302.4 元。若将每个鸡蛋便宜 2 分出售,这些蛋可卖 252 元。问大萝、小萝各有几个?3-2. 一辆卡车运矿车,晴天每天可运 20 次,雨天每天可运 12 次,它一共运了 112 次,平均每天运 14

5、次。这几天中有几天是雨天?3-3. 甲组工人生产一种零件,每天生产 250 个。按规定每个合格计 4 分,生产一只不合格要扣 15 分。该组工人 4 天共得了 3753 分。问生产合格的零件共多少只?3-4. 运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元。如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问有多少千克大西瓜?4-1. 有 3 元、5 元和 7 元的电影票 400 张,一共价值 1920 元。其中 7 元的和 5 元的张数相同,三种价格的电影票各有多少张?4-2. 有 1 元、5 元和 10 元的人民币共 14 张,总计 66

6、 元,其中 1 元比 10 元的多 2 张,问三种人民币各有多少张?4-3. 有1角、2角、4角、5角的邮票共26张,总计6.9元。其中,1角和2角的张数相等,4角和5角的张数相等。求这四张邮票各有多少张?5-1. 有黑白棋子一堆,其中黑子个数是白子个数的3倍。如果从这堆棋子中每次同时取出黑子6个,白子3个,那么取了多少次后,白子余5个,黑子余36个?5-2. 操场上有一群同学,男生人数是女生的4倍,每次同时有2名男生和1名女生回教室,若干次后,男生剩下8人,女生剩下1人?操场上共有多少名同学?第 2 讲 设数法解题在小升初试题中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细

7、分析就会发现,题目中缺少的条件,对于答案并无影响,这时就可以采用“设数代入法” ,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量方便计算) ,然后求出解答。一、典型例题例 1、如果=,=,那么=()个。例 2、甲、乙、丙三个仓库原有同样多的货,从甲仓库运 60 吨到乙仓库,从乙仓库运 45 吨到丙仓库,从丙仓库运 55 吨到甲仓库,这时三个仓库的货哪个最多?哪个最少?最多的比最少的多多少吨?例 3、足球赛门票 15 元一张,降价后观众增加一倍,收入增加 ,问一张门票降价多少元?15例 4、小王在一个小山坡来回运动。先从山下跑上山,每分钟跑 200 米,再从原路下山,每分钟

8、跑 240 米,又从原路上山,每分钟跑 150 米,再从原路下山,每分钟跑 200 米,求小王的平均速度。例 5、某幼儿园中班的小朋友平均身高 115 厘米,其中男孩比女孩多 ,女孩平均身高比男孩15高 10%,这个班男孩平均身高是多少?二、习题汇编1-1. 已知= , =,=,问= ( )个 。A A2-1. 五个人比较身高,甲比乙高 3 厘米,乙比丙矮 7 厘米,丙比丁高 10 厘米,丁比戊矮 5 厘米,甲与戊相比谁高,高几厘米?3-1. 某班一次考试,平均分为 70 分,其中 及格,及格的同学平均分为 80 分,那么不及格34的同学平均分是多少?3-2. 游泳池里参加游泳的学生中,小学生

9、占 30%,又来了一批学生后,学生总数增加 20%,小学生占学生总数的 40%,小学生增加百分之几?3-3. 一长方形每边增加 10%,那么,它的周长增加百分之几?它的面积增加百分之几?3-4. 五年级三个班的人数相等。一班的男生人数和二班的女生人数相等,三班的男生人数是全部男生人数的 ,全部女生人数占全年级人数的几分之几?254-1. 小华上山的速度是每小时 3 千米,下山的速度是每小时 6 千米,求上山后又沿原路下山的平均速度。4-2. 张师傅骑自行车往返 A、B 两地。去时每小时行 15 千米,返回时因逆风,每小时只行 10千米,张师傅往返途中的平均速度是每小时多少千米?4-3. 小王骑

10、摩托车往返 A、B 两地。平均速度为每小时 48 千米,如果他去时每小时行 42 千米,那么他返回时的平均速度是每小时行多少千米?5-1. 某班男生人数是女生的 ,男生平均身高为 138 厘米,全班平均身高为 132 厘米。问:23女生平均身高是多少厘米?5-2. 某班男生人数是女生的 ,女生的平均身高比男生高 15%,全班的平均身高是 130 厘米,45求男、女生的平均身高各是多少?第 3 讲 逆向推理法买汤喝的故事从前,有个土财主从来没出过门。一天,他带了一些钱和一些吃的东西自己上了街,逛了半天,感觉非常饿,于是就吃了一些东西,可又感觉特别渴,便走进了一家汤店。他找了一个位子坐下,然后大声

11、叫道:“小二,来碗鸡汤。 ”小二听了很快就端上了一碗香喷喷、热乎乎的鸡汤,并且对土财主说:“每碗十二文。 ”土财主冲着小二瞪大了眼睛, “我有的是钱!”随即摸了摸自己的口袋,这时土财主呆住了,袋子有个洞,他急忙把口袋翻了翻,还好还有十文钱,可这帐怎么算呢?突然,他又大口大口的喝起来,直到碗里还有一些。这时小二也走过来了,说:“付钱。 ”土财主甩出了十文钱,小二一看急了,说:“我刚刚不说了,一碗汤十二文,你怎么给十文呢?”土财主又冲着他说:“我的汤都喝了嘛,没有,我只喝了十二分之十,一碗汤十二文,所以我给你十文呀!”说着,土财主拍着屁股走出了汤店,小二还傻呼呼的站在那儿想呢。同学们,你一定收到过

12、精美的礼物吧!打开漂亮的彩纸,里面是一个盒子,再打开盒子,里面便是你心爱的礼物了!不过,你能把礼物包装还原吗?试试吧!现在,我们把这两个过程简单的写出来:(1)拆彩纸打开盒子取礼物;(2)放礼物盖好盒子包彩纸。我们不难发现,第(2)个过程刚好与第(1)个过程相反,它把礼物包装还原了。实际上,在小学数学中,有些问题如果从已知条件向所求问题推想下去会比较困难,这时我们不妨换个角度,从所求问题出发,倒着想,回到已知条件,解答起来反而很容易。这种倒着想的思考方法,在数学上叫做逆推法或还原法,这一类问题称为逆推或还原问题。在小朋友做题时,有的问题的解答,就像走迷宫一样,如果从已知条件向所求问题推想下去,

13、有时候可能会比较困难,但如果我们能换一种思考方法:从所求问题出发,倒着想,就比较容易解决问题了。像这样从结果出发,倒着想,也是我们思考问题的常用方法。一、典型例题例 1、一种小虫从幼虫长到成虫,每天长一倍,16 天能长到 16 厘米。那谁知道小虫长到 4 厘米的时候要用多少天呢?分析与解答由题中条件可知:每天毛毛虫的长度都是前一天的 2 倍,倒着想:就是前一天的长度是后一天长度的一半。我们从 16 天长到 16 厘米一天一天地往前推算:第 15 天长到 162=8(厘米) ,第 14天长到 82=4(厘米) 。所以,长到 4 厘米时要用 14 天.12481621例 2、一根铁丝剪去一半,再剪

14、去余下的一半,还剩 14 分米,这根铁丝原来长多少分米?例 3、一个数减 16 加上 240,再除以 7 得 40,那么这个数是多少呢?-16 +240 7 40用倒着想的方法思考,就是从原来运算的逆运算一步一步地推想最后是除以 7 得 40,如果不除以 7,那应该是 407=280;如果不加上 240,那应该是 280-240=40;如果不减去 16,那应该是16+40=56.407-240+16=56答:这个数是 56.例 4、小丽在做一道加法计算题时,由于粗心,把个位上的 4 看作 7,十位上的 8 看作 2,结果和是 306.正确的答案应该是多少?分析与解答要求正确的答案是多少,就要知

15、道两个正确的加数.看错的加数是 27,因此得到错误的和是306.我们倒着想,根据逆运算可得到一个没看错的加数是 306-27=279.题中已知另一个正确的加数是 84,所以,正确的和是 279+84=363。306-27+84=363还可以让结果还原,多加的 3 减去,少加的 60 应加上。即 306-3+60=363答:正确的答案应该是 363。例 5、小红、小丽、小华三人分苹果,小红得的苹果数比总数的一半多 1 个,小丽得的比剩下的一半多一个,小华得 10 个。问原来有多少个苹果?分析与解答 为什么小华得 10 个?这是因为小丽得到剩下的一半多一个,如果小丽只得了剩下的一半,那么小华应该得

16、 10+1=11(个) ,也就是剩下的另一半,这样也就说明了小丽得了同样多的一半,我们由此可以算出小红取去后剩下的苹果数是 112=22(个) 。根据同样的道理,如果小红得的是总数的一半,那么剩下的应该有 22+1=23(个) 。很明显,总数的另一半也就是 23 个,那么苹果总数应该是 232=46(个)【(10+1)2+1】=46(个)答:原来有 46 个苹果。例 6、三只笼里共养 24 只兔子,如果从第一只笼里取出 4 只放到第二只笼里,再从第二只笼里取出 3 只放到第三只笼里,那么三只笼里的兔子就一样多。求三只笼里原来各养了多少只兔子?分析与解答根据题意可知,三只笼里的兔子不管怎样移动,

17、兔子的总数是不变的,我们从变化的结果“只笼里的兔子一样多”可以知道,最后每只笼里的兔子都是 243=8(只) 。再对照题中条件,把各笼里的兔子还原,便可知三只笼里原来各养兔子的只数。第一只笼子:243+4=12(只)第二只笼子:243-4+3=7(只)第三只笼子:243-3=5(只)答:第一只笼子里原来有 12 只兔子,第二只笼子里原来有 7 只兔子,第三只笼子里原来有 5只兔子。例 7、老猴子把一堆桃子分给小猴子,它先取出全部的一半又 1 个分给第一只小猴子,再取出剩下的一半又 2 个分给第二只小猴子,最后再把余下的一半又 3 个分给第三只小猴子,这堆桃子恰好全部分完。问这堆桃子总共有多少个

18、?例 8、某仓库原有化肥若干吨,第一天上午运出总数的一半,下午又运出 5 吨;第二天上午运出剩下的一半,下午也运出 5 吨;第三天上午又运出剩下的一半,下午再运出 5 吨。剩下的化肥转让给甲、乙、丙三个工厂,甲得到 20 吨,乙得到的是甲的 2 倍,丙得到的是甲的一半。仓库原有化肥多少吨?二、习题汇编1-1. 一条小鱼,每天长一倍,20 天能长 20 厘米。问:这只小鱼长到 5 厘米的时候要用多少天?1-2. 某池中的睡莲所遮盖的面积,每天扩大 1 倍,20 天恰好遮住整个水池,问若只遮住水池的一半需要多少天?1-3. 有种水草每天能长一倍,8 天能长满一池塘。问长满半池塘需要多少天?2-1.

19、 小华用压岁钱的一半买了一只新书包,又用余下的一半买了几本文艺书,还剩下 15 元,小华的压岁钱一共有多少元?2-2. 小亮拿着 1 包糖,遇见好朋友 A,分给了他一半;过一会又遇见好朋友 B,把剩下的糖的一半分给了他;后来又遇到了好朋友 C,把这时手中所剩下的糖的一半又分给了 C,这时他自己手里只有一块了。问在没有分给 A 以前,小亮那包唐有几块?3-1. 一个数如果加上 5,乘 5,减去 5,再除以 5,结果还是 5,那么这个数是多少?3-2. 老师心中想了一个数,对他的学生说:“给这个数加上 9,再取和的一半应是 5。 ”他叫学生们把这个数算出来。你会算吗?3-3. 某数加上 6,乘 6

20、,减去 6,除以 6,最后结果等于 6。问这个数是几?3-4. 小明在做一道加法计算时,由于粗心,将个位上的 5 看作 9,把十位上的 8 看作了 3,结果所得的和是 123,正确答案应该是多少?3-5. 阿瓜做了这样一个题目:一个数减 16 加上 24,再除以 7 得 36,求这个数。你知道这个数是几吗?3-6. 太上老君把他今年的年龄加上 16,用 5 除,再减去 10,最后乘 l0,恰巧 100 岁,你知道太上老君今年多少岁吗?3-7. 小马虎在做一道减法算式,把减数十位上的 8 错看成 5,个位上的 7 错看成 1,结果求出错误的差是 236,正确的差是多少?3-8. 舒克问贝塔:“你

21、今年几岁?”贝塔回答:“用我的年龄减去 2,乘以 2,减去 2,除以2,恰好等于 3。 ”你能帮舒克算一下,贝塔今年多少岁么?3-9. 两个数的和是 45,灵灵在抄题的时候不小心抄错了,将其中一个数个位上的“0”丢掉了,结果算出来的结果是 18,则这两个数分别是多少?4-1. 小勇拿了妈妈给的零花钱去买去西。他先用这些钱的一半买了玩具,之后又买了 1 元 5角钱的小人书,最后还剩下 3 角钱。你知道妈妈给小勇多少钱吗?4-2. 三(1)班小图书箱第 1 天借出了存书的一半,第二天又借出 43 本,还剩 32 本。小图书箱原有图书多少本?4-3. 有一盘梨,第一天上午吃了 1 个,下午又吃了余下

22、的一半,这时还剩 1 个,这个盘中共有多少个梨?5-1. 小颖看一本故事书,第一天看了这本书的一半又 10 页,第二天看了余下的一半又 10 页,还剩下 15 页没有看,这本书一共有多少页?5-2. 农妇卖蛋,第一次卖掉篮中的一半又 1 个,第二次又卖掉剩下的一半又 1 个,这时篮中还剩 1 个。问原来蓝中有蛋几个。5-3. 一根电线,电工叔叔用了全长的一半多 1 米,第二次用了剩下的一半多 1 米,这时还剩下 10 米。求这根电线原来长多少米?5-4. 芳芳、宁宁和玲玲三人分铅笔,芳芳得的比总数的一半多 1 支,宁宁得的比剩下的一半多 1 支,玲玲得 6 支。问原来共有铅笔多少支?5-5.

23、山顶上有棵桃数,一只猴子偷吃桃子,第一天偷吃了总数的一半多 2 个,第二天又偷吃了剩下的一半多 2 个,这时还剩 1 个,问:树上原来有多少个桃子?5-6. 文化用品店新到一批日记本,上一周售出本数比总数的一半少 12 本;这一周售出的本数比所剩的一半多 12 本;结果还有 19 本。问这批日记本有多少?5-7. 三年级一班学生人数的一半多 1 人参加了合唱队,剩下人数的一半少 2 人参加了舞蹈队,最后剩下的 15 人参加了足球队,三年级一班一共有多少人?5-8. 小红、小芳、小明三人分铅笔,小红得到总数的一半多 1 支,小芳得的比剩下的一半少1 支,小明得 8 支,原来共有铅笔多少支?5-9

24、. 某人去银行取款,第一次取了存款的一半多 30 元,第二次取了余下的一半少 100 元,这时他的存折上还剩 600 元。他有存款多少元?5-10. 三群蜜蜂在桃树林里采蜜,A 群采全部桃树的一半少 4 棵,B 群采剩下桃树的一半多 2棵,C 群采剩下的 50 棵桃树上的花蜜。那么,桃树林中共有桃树多少棵桃树?6-1. 甲、乙、丙三人各有弹力球若干个。如果甲给乙 4 个,乙给丙 2 个,丙给甲 5 个,现在三人的弹力球都是 15 个。他们原来各有多少个?6-2. 有甲、乙、丙、丁四篮苹果,如果从甲篮拿出 10 个给乙篮,从乙篮拿出 12 个给丙篮,从丙篮拿出 20 个给丁篮,从丁篮拿出 14

25、个给甲篮后,四篮苹果的个数相等,已知四个篮共有苹果112 个,问四篮原来各有苹果多少个?7-1. 有 26 块砖,兄弟两人争着去搬,弟弟抢在前面,刚摆好砖,哥哥赶来了。哥哥看弟弟搬的太多,就搬来一半给自己。弟弟觉得自己能行,又从哥哥那里搬来一半。哥哥不让,弟弟只好给哥哥 5 块,这样哥哥比弟弟多搬了 2 块。问:最初弟弟准备搬多少块?8-1. 现有一堆棋子,把它分成三等份后还剩一颗;取出其中的两份又分成三等份后还剩一颗;再取出其中的两份再分成三等份后还剩一颗。问原来至少有多少颗棋子?8-2. 妈妈从副食店买回一些鸡蛋。第一天吃了总数的一半又半个,第二天吃了余下的一半又半个,第三天又吃了余下的一

26、半又半个,恰好吃完。妈妈从副食店买回了多少个鸡蛋?第 4 讲 列表尝试法例 1、老大、老二、老三兄弟三人岁数之和是 32 岁,老大的岁数比老二大 3 岁, 而且老大的岁数是老三的 2 倍,问兄弟三人各几岁? 例 2、甲乙二人岁数之和是 99 岁,甲比乙大 9 岁,而且甲的岁数的两个数字互相交换位置后恰是乙的岁数,问甲乙各多少岁?练习:1、 一次数学测验共 10 题,小明都做完了,但只得到 29 分,因为按规定做对一题得 5 分,做错一题扣掉 2 分,你知道小明做错了几题吗?2、 240 元钱平均分给若干人,正在分时,有一个人离开了,因而,现在每人多分了 1 元,问现在有多少人?3、 如果小芳给

27、小明一个玻璃球,两人的玻璃球数相等;如果小明给小芳一个玻璃球,则小芳的玻璃球数就是小明的两倍。问小明、小芳原来个有几个玻璃球?4、 某学校的学生去郊游,中午开饭时,两个学生合用 1 只饭碗,三个学生合用 1 只菜碗,四个学生合用 1 只汤碗,共用了 65 只碗,问共有多少学生?5、 一只鸡有一个头两只脚,一只兔有一个头四只脚。如果一个笼子里关着的鸡和兔子共有10 个头和 26 只脚,你知道笼子里有几只鸡,有几只兔吗?6、 一辆自行车有 2 个轮子,一辆三轮车有 3 个轮子,车棚里放着自行车和三轮车共 10 辆,数一数车轮共有 26 个。问自行车几辆,三轮车几辆?7、 一只蛐蛐 6 条腿,一只蜘

28、蛛 8 条腿。现在有蛐蛐和蜘蛛共 10 只,共有 68 条腿。问蛐蛐有几只,蜘蛛有几只?8、 今有五分的和一角的两种汽车票,共 10 张,总钱数是七角五分,问每种各几张?9、 如图所示,已知长方形的周长为 20 厘米,长和宽都是整厘米数,这个长方形有多少种可能形状?那种形状的长方形面积最大?(边长为 1 厘米的正方形的面积叫做 1 平方厘米)10、 一个长方形的周长是 22 米,如果它的长和宽都是整米数,问:(1) 这个长方形的面积有多少可能值?(2) 面积最大的长方形的长和宽是多少?11、 如图, ABCD 是一个正方形,边长为 2 厘米,沿着图中线段从 A 到 C 的最短长度为 4 厘米,

29、问这样的最短路线共有多少条?长宽 1 厘米1 厘米A BD C12、 (1) 在 10 和 31 之间有多少个数是 3 的倍数?(2) 在 10 和 1000 之间有多少个数是 3 的倍数?13、 (1) 两个整数之积为 144,差为 10,求这两个数。(2) 12 枚硬币的总值是 1 元,其中只有 5 分和 1 角的两种,问每种硬币各有多少个?14、 小虎给 4 个小朋友写信,由于粗心,把信纸装入信封时都给装错了,4 个好朋友收到的都是给别人的信,问小虎装错的情况共有多少种可能?15、 (1) 三个自然数的乘积是 24,问由这样的三个数所组成的数组有多少个?如(1,2,12)就是其中的一个,

30、而且要注意数组中数字相同但顺序不同的算作同一组,如(1,2,12)和(2,12,1)是同一数组。(2) 右图中有 6 个点,9 条线段,一只甲虫从 A 点出发,要沿着某几条线段爬行到点 F,行进中甲虫只能向右、向下或向右下方运动,问这只甲虫有多少种不同的走法? 16、一个学生假期往 A, B, C 三个城市游览,他今天在这个城市,明天到另一个城市。假如他第一天在 A 市,第五天又回到 A 市。问他的旅游路线共有几种不同的方案?第 6 讲 线段图法数字从一到十,单纯来看是枯燥乏味的,如果巧妙地运用它,进行艺术加工,嵌入诗歌,结构精巧,能使诗歌形式奇异,读起来琅琅上口,趣味横生,有独特的风格。如描

31、写乡村图景和改革开放以来农村变化的诗有:其一:一去二三里,烟村四五家,楼台六七座,八九十枝花。其二:一年收出二年谷,三家有余四家足,举目五六七里内,八九十幢高楼矗。再如解放前四川重庆市一家晚报登过这样一首描绘中学教师饥寒交迫生活的诗:“一身平价布,两袖粉笔灰,三餐吃不饱,四季常皱眉,五更就起床,六堂要你吹,七天一星期,八方逛几回,九天不发饷,十家皆断炊。一到十,在上面几首诗歌中运用自如,令人拍手叫绝。对大家来说,做应用题相比计算题要稍难一些,不过如果我们能借助线段图来分析数量关系,解答应用题就容易多了。因为用线段图去把应用题的已知条件和问题“画”出来,就可使应用题变得具体、形象、便于大家分析,

32、再仔细观察线段与线段之间的长度关系,便可找到数量之间的关系,从而迅速列出算式,解答问题。一、典型例题例 1、弟弟有课外书 28 本,哥哥课外书的本书比弟弟的 2 倍还多 12 本。请问:哥哥有课外书多少本? 例 2、某牧场养奶牛 270 头,养的小鹿比奶牛的三倍还多 25 头,请问:牧场里小鹿的数量比奶牛多多少头?例 3、书架上第一层有 55 本图书,第二层的图书比第一层的 2 倍少 37 本。请问:两层一共有书多少本?例 4、某专业户养鸡、鸭共 480 只,其中鸭的只数是鸡的 3 倍,这个专业户养鸡、鸭各多少只?例 5、甲桶有油 25kg,乙桶有油 17kg,乙桶倒入多少千克油给甲桶后,甲桶

33、油是乙桶的 5 倍?例 6、水果店有梨和苹果共 240 箱,梨卖出 40 箱,又运进苹果 70 箱,这时苹果的箱数正好是梨的 2 倍,水果店原来有梨和苹果各多少箱?例 7、爷爷的年龄是孙子的 7 倍,爷爷比孙子大 60 岁,他俩分别是多少岁?例 8、电视机厂五月份比四月份多生产电视机 400 台,六月份比五月份多生产 500 台,六月份生产的台数正好是四月份的 2 倍,三个月各生产电视机多少台?二、习题汇编1-1. 一把椅子 36 元,一张桌子的价钱比一把椅子的 4 倍还多 15 元。请问:一张桌子多少元?(要求:借助线段解题)1-2. 学校有足球 53 只,篮球的只数比足球的 2 倍还多 2

34、7 只,篮球比足球多多少只?1-3. 兄弟二人去钓鱼,弟弟钓了 17 条鱼,哥哥钓的鱼比弟弟的 3 倍少 16 条,请问:兄弟两人一共钓了多少条鱼?1-4. 学校里种了 42 课松树,是柏树棵树的 3 倍,请问:松树比柏树多多少棵?1-5. 图书馆借出故事书 120 本,是借出的文艺书的 5 倍,借出的故事书比文艺书多多少本?2-1. 图书馆买来科技书和故事书共 240 本,买来的故事书是科技书的 3 倍。学校买来科技书和故事书各多少本? 3-1. 小华有玩具 30 个,小明有玩具 15 个,问小明给小华几个玩具后,小华玩具的个数是小明的 8 倍? 4-1. 甲、乙两数的和为 300,甲增加

35、60,乙减少 10 后,甲是乙的 6 倍,甲、乙两数原来是多少? 5-1. 姐姐和妹妹都拿到一些压岁钱,姐姐比妹妹多拿 400 元,姐姐的压岁钱正好是妹妹的 3倍,两人各拿多少钱? 6-1. A、B 两个粮仓,A 仓所存粮食的重量比是 3:5,如果从 A 仓运出粮食 48 吨,从 B 仓运出其所存粮食的 ,这时两仓存粮吨数相等,问 B 仓原有存粮多少吨?9207-1. 小明比小英小 5 岁,小方比小明大 2 岁。那么小英和小方差几岁?7-2. 小初、小美、小英三个人分糖块。小美比小英多 3 块,小初比小美多 2 块。已知糖块总数是 50 块,那么每人各分到多少块?8-1. 小健到商店去买练习本,他的钱若买 4 本还剩 2 分;若买 5 本,就差 1 角。问小健有多少钱?9-1. 一筐鲜鱼,连筐共重 56 千克。称卖出鲜鱼的一半,再卖出剩下的一半,这时连筐还重17 千克。原来这筐鲜鱼重多少千克?9-2. 小秋用一根绳子测量一口枯井的深。他把绳子放入井里,当绳子到达井底后,井外还留有 15 米;小秋又把这桶绳子对折后再放入井里,井外还留有 1 米。请问,这口枯井有多少米深?

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初级教育 > 小学教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报