收藏 分享(赏)

小学数学应用题解题思路及方法.doc

上传人:精品资料 文档编号:11209609 上传时间:2020-02-19 格式:DOC 页数:15 大小:88.04KB
下载 相关 举报
小学数学应用题解题思路及方法.doc_第1页
第1页 / 共15页
小学数学应用题解题思路及方法.doc_第2页
第2页 / 共15页
小学数学应用题解题思路及方法.doc_第3页
第3页 / 共15页
小学数学应用题解题思路及方法.doc_第4页
第4页 / 共15页
小学数学应用题解题思路及方法.doc_第5页
第5页 / 共15页
点击查看更多>>
资源描述

1、小学数学应用题解题思路及方法30 类典型应用题:1、归一问题 【含义】 在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。【数量关系】总量份数1 份数量 1 份数量 所占份数所求几份的数量另一总量(总量份数)所求份数【解题思路和方法】 先求出单一量,以单一量为标准,求出所要求的数量。 1、买 5 支铅笔要 0.6 元钱,买同样的铅笔 16 支,需要多少元2、3 台拖拉机 3 天耕地 90 公顷,照这样计算,5 台拖拉机 6 天耕地多少公顷?3、 5 辆汽车 4 次可以运送 100 吨钢材,如果用同样的 7 辆汽车运送 105 吨钢材,需要运几

2、次? 2、归总问题【含义】 解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。 【数量关系】1 份数量份数总量 总量1 份数量份数总量另一份数另一每份数量 【解题思路和方法】 先求出总数量,再根据题意得出所求的数量。4、服装厂原来做一套衣服用布 3.2 米,改进裁剪方法后,每套衣服用布 2.8米。原来做 791 套衣服的布,现在可以做多少套? 5、小华每天读 24 页书,12 天读完了红岩一书。小明每天读 36 页书,几天可以读完红岩? 6、食堂运来一批蔬菜,原计划每天吃

3、50 千克,30 天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃 10 千克,这批蔬菜可以吃多少天? 3、和差问题 【含义】 已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。 【数量关系】大数(和差) 2 小数(和差) 2 【解题思路和方法】 简单的题目可以直接套用公式;复杂的题目变通后再用公式。7、 甲乙两班共有学生 98 人,甲班比乙班多 6 人,求两班各有多少人? 8、 长方形的长和宽之和为 18 厘米,长比宽多 2 厘米,求长方形的面积。9、 有甲乙丙三袋化肥,甲乙两袋共重 32 千克,乙丙两袋共重 30 千克,甲丙两袋共重 22 千克,求三袋化肥各重多少

4、千克。10、 甲乙两车原来共装苹果 97 筐,从甲车取下 14 筐放到乙车上,结果甲车比乙车还多 3 筐,两车原来各装苹果多少筐? 4、和倍问题 【含义】 已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。 【数量关系】总和 (几倍1)较小的数 总和 较小的数 较大的数 【解题思路和方法】 简单的题目可以直接套用公式;复杂的题目变通后再用公式。11、果园里有杏树和桃树共 248 棵,桃树的棵数是杏树的 3 倍,求杏树、桃树各多少棵?12、 东西两个仓库共存粮 480 吨,东库存粮数是西库存粮数的 1.4 倍,求两库各存粮多少吨?13、甲站

5、原有车 52 辆,乙站原有车 32 辆,若每天从甲站开往乙站 28 辆,从乙站开往甲站 24 辆,几天后乙站车辆数是甲站的 2 倍?14、甲乙丙三数之和是 170,乙比甲的 2 倍少 4,丙比甲的 3 倍多 6,求三数各是多少?5、差倍问题 【含义】 已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。 【数量关系】两个数的差(几倍1)较小的数 较小的数几倍较大的数 【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。 例 1 果园里桃树的棵数是杏树的 3 倍,而且桃树比杏树多 124 棵。求杏树、桃树各多少棵?例 2 爸

6、爸比儿子大 27 岁,今年,爸爸的年龄是儿子年龄的 4 倍,求父子二人今年各是多少岁?例 3 商场改革经营管理办法后,本月盈利比上月盈利的 2 倍还多 12 万元,又知本月盈利比上月盈利多 30 万元,求这两个月盈利各是多少万元?例 4 粮库有 94 吨小麦和 138 吨玉米,如果每天运出小麦和玉米各是 9 吨,问几天后剩下的玉米是小麦的 3 倍?6 倍比问题【含义】 有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。 【数量关系】总量一个数量倍数 另一个数量倍数另一总量 【解题思路和方法】 先求出倍数,再用倍比关系求出

7、要求的数。例 1 100 千克油菜籽可以榨油 40 千克,现在有油菜籽 3700 千克,可以榨油多少?例 2 今年植树节这天,某小学 300 名师生共植树 400 棵,照这样计算,全县 48000 名师生共植树多少棵?例 3 凤翔县今年苹果大丰收,田家庄一户人家 4 亩果园收入 11111 元,照这样计算,全乡 800 亩果园共收入多少元?全县 16000 亩果园共收入多少元?7 相遇问题【含义】 两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。 【数量关系】相遇时间总路程(甲速乙速) 总路程(甲速乙速) 相遇时间 【解题思路和方法】 简单的题目可直接利用公式,复杂的

8、题目变通后再利用公式。例 1 南京到上海的水路长 392 千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行 28 千米,从上海开出的船每小时行 21 千米,经过几小时两船相遇?例 2 小李和小刘在周长为 400 米的环形跑道上跑步,小李每秒钟跑 5 米,小刘每秒钟跑 3 米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?例 3 甲乙二人同时从两地骑自行车相向而行,甲每小时行 15 千米,乙每6、倍比问题 小时行 13 千米,两人在距中点 3 千米处相遇,求两地的距离。8 追及问题 【含义】 两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,

9、或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。【数量关系】追及时间追及路程(快速慢速) 追及路程(快速慢速)追及时间 【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。 例 1 好马每天走 120 千米,劣马每天走 75 千米,劣马先走 12 天,好马几天能追上劣马?例 2 小明和小亮在 200 米环形跑道上跑步,小明跑一圈用 40 秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了 500 米,求小亮的速度是每秒多少米。例 3 我人民解放军追击一股逃

10、窜的敌人,敌人在下午 16 点开始从甲地以每小时 10 千米的速度逃跑,解放军在晚上 22 点接到命令,以每小时 30 千米的速度开始从乙地追击。已知甲乙两地相距 60 千米,问解放军几个小时可以追上敌人?例 4 一辆客车从甲站开往乙站,每小时行 48 千米;一辆货车同时从乙站开往甲站,每小时行 40 千米,两车在距两站中点 16 千米处相遇,求甲乙两站的距离。例 5 兄妹二人同时由家上学,哥哥每分钟走 90 米,妹妹每分钟走 60 米。哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校 180 米处和妹妹相遇。问他们家离学校有多远?例 6 孙亮打算上课前 5 分钟到学校,他以每小时

11、4 千米的速度从家步行去学校,当他走了 1 千米时,发现手表慢了 10 分钟,因此立即跑步前进,到学校恰好准时上课。后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早 9 分钟到学校。求孙亮跑步的速度。9 植树问题 【含义】 按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。【数量关系】线形植树 棵数距离棵距1 环形植树 棵数距离棵距 方形植树 棵数距离棵距4 三角形植树 棵数距离棵距3 面积植树 棵数面积(棵距行距) 【解题思路和方法】 先弄清楚植树问题的类型,然后可以利用公式。例 1 一条河堤 136 米,每隔 2 米栽一棵垂柳,

12、头尾都栽,一共要栽多少棵垂柳?例 2 一个圆形池塘周长为 400 米,在岸边每隔 4 米栽一棵白杨树,一共能栽多少棵白杨树?例 3 一个正方形的运动场,每边长 220 米,每隔 8 米安装一个照明灯,一共可以安装多少个照明灯?例 4 给一个面积为 96 平方米的住宅铺设地板砖,所用地板砖的长和宽分别是 60 厘米和 40 厘米,问至少需要多少块地板砖?例 5 一座大桥长 500 米,给桥两边的电杆上安装路灯,若每隔 50 米有一个电杆,每个电杆上安装 2 盏路灯,一共可以安装多少盏路灯?10、年龄问题【含义】 这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的

13、倍数关系随着年龄的增长在发生变化。 【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变” 这个特点。 【解题思路和方法】 可以利用“ 差倍问题”的解题思路和方法。例 1 爸爸今年 35 岁,亮亮今年 5 岁,今年爸爸的年龄是亮亮的几倍?明年呢?例 2 母亲今年 37 岁,女儿今年 7 岁,几年后母亲的年龄是女儿的 4 倍?例 3 3 年前父子的年龄和是 49 岁,今年父亲的年龄是儿子年龄的 4 倍,父子今年各多少岁?例 4 甲对乙说: “当我的岁数曾经是你现在的岁数时,你才 4 岁”。乙对甲说:“当我的岁数将来是你现在的岁数时,

14、你将 61 岁”。求甲乙现在的岁数各是多少?11、行船问题 【含义】 行船问题也就是与航行有关的问题。解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。 【数量关系】(顺水速度逆水速度)2船速(顺水速度逆水速度)2水速 顺水速船速2逆水速逆水速水速 2 逆水速船速2顺水速顺水速水速 2 【解题思路和方法】 大多数情况可以直接利用数量关系的公式。 例 1 一只船顺水行 320 千米需用 8 小时,水流速度为每小时 15 千米,这只船逆水行这段路程需用几小时?例 2 甲船逆

15、水行 360 千米需 18 小时,返回原地需 10 小时;乙船逆水行同样一段距离需 15 小时,返回原地需多少时间?例 3 一架飞机飞行在两个城市之间,飞机的速度是每小时 576 千米,风速为每小时 24 千米,飞机逆风飞行 3 小时到达,顺风飞回需要几小时?12、列车问题13、【含义】 这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。 【数量关系】火车过桥:过桥时间(车长桥长)车速火车追及:追及时间(甲车长乙车长距离)(甲车速乙车速) 火车相遇:相遇时间(甲车长乙车长距离)(甲车速乙车速) 【解题思路和方法】 大多数情况可以直接利用数量关系的公式。 例 1 一座大桥长 2400 米

16、,一列火车以每分钟 900 米的速度通过大桥,从车头开上桥到车尾离开桥共需要 3 分钟。这列火车长多少米? 例 2 一列长 200 米的火车以每秒 8 米的速度通过一座大桥,用了 2 分 5秒钟时间,求大桥的长度是多少米?例 3 一列长 225 米的慢车以每秒 17 米的速度行驶,一列长 140 米的快车以每秒 22 米的速度在后面追赶,求快车从追上到追过慢车需要多长时间?例 4 一列长 150 米的列车以每秒 22 米的速度行驶,有一个扳道工人以每秒 3 米的速度迎面走来,那么,火车从工人身旁驶过需要多少时间?例 5 一列火车穿越一条长 2000 米的隧道用了 88 秒,以同样的速度通过一条

17、长 1250 米的大桥用了 58 秒。求这列火车的车速和车身长度各是多少?14、时钟问题 【含义 】 就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为 60 度等。时钟问题可与追及问题相类比。 【数量关系】分针的速度是时针的 12 倍,二者的速度差为 11/12。通常按追及问题来对待,也可以按差倍问题来计算。【解题思路和方法】 变通为“ 追及问题”后可以直接利用公式。 例 1 从时针指向 4 点开始,再经过多少分钟时针正好与分针重合?例 2 四点和五点之间,时针和分针在什么时候成直角?例 3 六点与七点之间什么时候时针与分针重合?15、盈亏问题 【含义】 根据一

18、定的人数,分配一定的物品,在两次分配中,一次有余(盈),一次不足(亏),或两次都有余,或两次都不足,求人数或物品数,这类应用题叫做盈亏问题。 【数量关系】一般地说,在两次分配中,如果一次盈,一次亏,有:参加分配总人数(盈亏)分配差如果两次都盈或都亏,则有:参加分配总人数(大盈小盈)分配差参加分配总人数(大亏小亏)分配差 【解题思路和方法】 大多数情况可以直接利用数量关系的公式。 例 1 给幼儿园小朋友分苹果,若每人分 3 个就余 11 个;若每人分 4 个就少 1 个。问有多少小朋友?有多少个苹果?例 2 修一条公路,如果每天修 260 米,修完全长就得延长 8 天;如果每天修 300 米,修

19、完全长仍得延长 4 天。这条路全长多少米?例 3 学校组织春游,如果每辆车坐 40 人,就余下 30 人;如果每辆车坐45 人,就刚好坐完。问有多少车?多少人?15、工程问题【含义】 工程问题主要研究工作量、工作效率和工作时间三者之间的关系。这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“ 一块土地”、“一条水渠 ”、“一件工作” 等,在解题时,常常用单位“1”表示工作总量。 【数量关系】解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。工

20、作量工作效率工作时间 工作时间工作量工作效率工作时间总工作量(甲工作效率乙工作效率)【解题思路和方法】 变通后可以利用上述数量关系的公式。例 1 一项工程,甲队单独做需要 10 天完成,乙队单独做需要 15 天完成,现在两队合作,需要几天完成?例 2 一批零件,甲独做 6 小时完成,乙独做 8 小时完成。现在两人合做,完成任务时甲比乙多做 24 个,求这批零件共有多少个?例 3 一件工作,甲独做 12 小时完成,乙独做 10 小时完成,丙独做 15 小时完成。现在甲先做 2 小时,余下的由乙丙二人合做,还需几小时才能完成?例 4 一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水

21、管。当打开 4 个进水管时,需要 5 小时才能注满水池;当打开 2 个进水管时,需要 15 小时才能注满水池;现在要用 2 小时将水池注满,至少要打开多少个进水管?16、正反比例问题【含义】 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定(即商一定),那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。正比例应用题是正比例意义和解比例等知识的综合运用。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。反比例应用题是反比例的意义和解比例等知识的综合运用。【数

22、量关系】判断正比例或反比例关系是解这类应用题的关键。许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。【解题思路和方法】 解决这类问题的重要方法是:把分率(倍数)转化为比,应用比和比例的性质去解应用题。正反比例问题与前面讲过的倍比问题基本类似。例 1 修一条公路,已修的是未修的 1/3,再修 300 米后,已修的变成未修的 1/2,求这条公路总长是多少米?例 2 张晗做 4 道应用题用了 28 分钟,照这样计算,91 分钟可以做几道应用题?例 3 孙亮看十万个为什么这本书,每天看 24 页,15 天看完,如果每天看 36 页,几天就可以看完?例 4 一个大矩形被分成六个小矩形,其中四

23、个小矩形的面积如图所示,求大矩形的面积。17、按比例分配问题 【含义】 所谓按比例分配,就是把一个数按照一定的比分成若干份。这类题的已知条件一般有两种形式:一是用比或连比的形式反映各部分占总数量的份数,另一种是直接给出份数。 【数量关系】从条件看,已知总量和几个部分量的比;从问题看,求几个部分量各是多少。 总份数比的前后项之和 【解题思路和方法】 先把各部分量的比转化为各占总量的几分之几,把比的前后项相加求出总份数,再求各部分占总量的几分之几(以总份数作分母,比的前后项分别作分子),再按照求一个数的几分之几是多少的计算方法,分别求出各部分量的值。例 1 学校把植树 560 棵的任务按人数分配给

24、五年级三个班,已知一班有47 人,二班有 48 人,三班有 45 人,三个班各植树多少棵?例 2 用 60 厘米长的铁丝围成一个三角形,三角形三条边的比是 345。三条边的长各是多少厘米?例 3 从前有个牧民,临死前留下遗言,要把 17 只羊分给三个儿子,大儿子分总数的 1/2,二儿子分总数的 1/3,三儿子分总数的 1/9,并规定不许把羊宰割分,求三个儿子各分多少只羊。例 4 某工厂第一、二、三车间人数之比为 81221,第一车间比第二车间少 80 人,三个车间共多少人? 18、百分数问题 【含义】 百分数是表示一个数是另一个数的百分之几的数。百分数是一种特殊的分数。分数常常可以通分、约分,

25、而百分数则无需;分数既可以表示“率”,也可以表示“量”,而百分数只能表示“率”;分数的分子、分母必须是自然数,而百分数的分子可以是小数;百分数有一个专门的记号“%”。在实际中和常用到“百分点 ”这个概念,一个百分点就是 1%,两个百分点就是 2%。 【数量关系】掌握“百分数”、“标准量”“ 比较量”三者之间的数量关系:百分数比较量 标准量 标准量比较量 百分数 【解题思路和方法】 一般有三种基本类型:(1) 求一个数是另一个数的百分之几;(2) 已知一个数,求它的百分之几是多少;(3) 已知一个数的百分之几是多少,求这个数。百分数又叫百分率,百分率在工农业生产中应用很广泛,常见的百分率有:增长

26、率增长数 原来基数100%合格率合格产品数 产品总数100%出勤率实际出勤人数 应出勤人数100%出勤率实际出勤天数 应出勤天数100%缺席率缺席人数实有总人数100%发芽率发芽种子数 试验种子总数100%成活率成活棵数 种植总棵数100%出粉率面粉重量 小麦重量100%出油率油的重量 油料重量100%废品率废品数量 全部产品数量100%命中率命中次数 总次数100%烘干率烘干后重量 烘前重量100%及格率及格人数 参加考试人数100%例 1 仓库里有一批化肥,用去 720 千克,剩下 6480 千克,用去的与剩下的各占原重量的百分之几?例 2 红旗化工厂有男职工 420 人,女职工 525

27、人,男职工人数比女职工少百分之几?例 3 红旗化工厂有男职工 420 人,女职工 525 人,女职工比男职工人数多百分之几?例 4 红旗化工厂有男职工 420 人,有女职工 525 人,男、女职工各占全厂职工总数的百分之几?19、“牛吃草”问题 【含义】 “牛吃草”问题是大科学家牛顿提出的问题,也叫“牛顿问题”。这类问题的特点在于要考虑草边吃边长这个因素。【数量关系】草总量原有草量草每天生长量天数 【解题思路和方法】 解这类题的关键是求出草每天的生长量。例 1 一块草地,10 头牛 20 天可以把草吃完,15 头牛 10 天可以把草吃完。问多少头牛 5 天可以把草吃完?例 2 一只船有一个漏洞

28、,水以均匀速度进入船内,发现漏洞时已经进了一些水。如果有 12 个人淘水,3 小时可以淘完;如果只有 5 人淘水,要 10 小时才能淘完。求 17 人几小时可以淘完?20、鸡兔同笼问题 【 含义】 这是古典的算术问题。已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。 【数量关系】第一鸡兔同笼问题:假设全都是鸡,则有 兔数(实际脚数2鸡兔总数)(42)假设全都是兔,则有 鸡数(4鸡兔总数实际脚数)(42)第二鸡兔同笼问题:假设全都是鸡,则有 兔数(2鸡兔总数鸡与兔脚之差) (42)假

29、设全都是兔,则有 鸡数(4鸡兔总数鸡与兔脚之差) (42)【解题思路和方法】 解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。这类问题也叫置换问题。通过先假设,再置换,使问题得到解决。 例 1 长毛兔子芦花鸡,鸡兔圈在一笼里。数数头有三十五,脚数共有九十四。请你仔细算一算,多少兔子多少鸡?例 2 2 亩菠菜要施肥 1 千克,5 亩白菜要施肥 3 千克,两种菜共 16 亩,施肥 9 千克,求白菜有多少亩?例 3 李老师用 69 元给学校买作业本和日记本共 45 本,作业本每本 3 .20元,日记本每本 0.70 元。

30、问作业本和日记本各买了多少本?例 4 (第二鸡兔同笼问题)鸡兔共有 100 只,鸡的脚比兔的脚多 80 只,问鸡与兔各多少只?例 5 有 100 个馍 100 个和尚吃,大和尚一人吃 3 个馍,小和尚 3 人吃 1个馍,问大小和尚各多少人?21、方阵问题 【含义】 将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题。 【数量关系】(1)方阵每边人数与四周人数的关系:四周人数(每边人数1 )4每边人数四周人数4 1( 2)方阵总人数的求法:实心方阵:总人数每边人数每边人数空心方阵:总人数(外边人数) (内边人数)内边人数外边人数层数2(3)若将空心

31、方阵分成四个相等的矩形计算,则:总人数(每边人数层数)层数4 【解题思路和方法】 方阵问题有实心与空心两种。实心方阵的求法是以每边的数自乘;空心方阵的变化较多,其解答方法应根据具体情况确定。 例 1 在育才小学的运动会上,进行体操表演的同学排成方阵,每行 22 人,参加体操表演的同学一共有多少人?例 2 有一个 3 层中空方阵,最外边一层有 10 人,求全方阵的人数。例 3 有一队学生,排成一个中空方阵,最外层人数是 52 人,最内层人数是 28 人,这队学生共多少人?例 4 一堆棋子,排列成正方形,多余 4 棋子,若正方形纵横两个方向各增加一层,则缺少 9 只棋子,问有棋子多少个?例 5 有

32、一个三角形树林,顶点上有 1 棵树,以下每排的树都比前一排多1 棵,最下面一排有 5 棵树。这个树林一共有多少棵树?22、商品利润问题 【含义】 这是一种在生产经营中经常遇到的问题,包括成本、利润、利润率和亏损、亏损率等方面的问题。 【数量关系】利润售价进货价 利润率(售价进货价)进货价100%售价进货价(1利润率)亏损进货价售价 亏损率(进货价售价)进货价100%【解题思路和方法】 简单的题目可以直接利用公式,复杂的题目变通后利用公式。例 1 某商品的平均价格在一月份上调了 10%,到二月份又下调了 10%,这种商品从原价到二月份的价格变动情况如何?例 2 某服装店因搬迁,店内商品八折销售。

33、苗苗买了一件衣服用去 52 元,已知衣服原来按期望盈利 30%定价,那么该店是亏本还是盈利?亏(盈)率是多少?例 3 成本 0.25 元的作业本 1200 册,按期望获得 40%的利润定价出售,当销售出 80%后,剩下的作业本打折扣,结果获得的利润是预定的 86%。问剩下的作业本出售时按定价打了多少折扣?例 4 某种商品,甲店的进货价比乙店的进货价便宜 10%,甲店按 30%的利润定价,乙店按 20%的利润定价,结果乙店的定价比甲店的定价贵 6 元,求乙店的定价。23、存款利率问题 【含义】 把钱存入银行是有一定利息的,利息的多少,与本金、利率、存期这三个因素有关。利率一般有年利率和月利率两种

34、。年利率是指存期一年本金所生利息占本金的百分数;月利率是指存期一月所生利息占本金的百分数。 【数量关系】年(月)利率利息本金存款年(月)数100%利息本金存款年(月)数年(月)利率本利和本金利息本金1年(月)利率存款年(月)数 【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。例 1 李大强存入银行 1200 元,月利率 0.8%,到期后连本带利共取出1488 元,求存款期多长。例 2 银行定期整存整取的年利率是:二年期 7.92%,三年期 8.28%,五年期 9%。如果甲乙二人同时各存入 1 万元,甲先存二年期,到期后连本带利改存三年期;乙直存五年期。五年后二人同时取

35、出,那么,谁的收益多?多多少元?24、溶液浓度问题【含义】 在生产和生活中,我们经常会遇到溶液浓度问题。这类问题研究的主要是溶剂(水或其它液体)、溶质、溶液、浓度这几个量的关系。例如,水是一种溶剂,被溶解的东西叫溶质,溶解后的混合物叫溶液。溶质的量在溶液的量中所占的百分数叫浓度,也叫百分比浓度。 【数量关系】溶液溶剂溶质 浓度溶质溶液100%【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。例 1 爷爷有 16%的糖水 50 克,(1)要把它稀释成 10%的糖水,需加水多少克?(2)若要把它变成 30%的糖水,需加糖多少克?例 2 要把 30%的糖水与 15%的糖水混合

36、,配成 25%的糖水 600 克,需要30%和 15%的糖水各多少克?例 3 甲容器有浓度为 12%的盐水 500 克,乙容器有 500 克水。把甲中盐水的一半倒入乙中,混合后再把乙中现有盐水的一半倒入甲中,混合后又把甲中的一部分盐水倒入乙中,使甲乙两容器中的盐水同样多。求最后乙中盐水的百分比浓度。25、公约公倍问题【含义】 需要用公约数、公倍数来解答的应用题叫做公约数、公倍数问题。 【数量关系】绝大多数要用最大公约数、最小公倍数来解答。 【解题思路和方法】 先确定题目中要用最大公约数或者最小公倍数,再求出答案。最大公约数和最小公倍数的求法,最常用的是“短除法”。 例 1 一张硬纸板长 60

37、厘米,宽 56 厘米,现在需要把它剪成若干个大小相同的最大的正方形,不许有剩余。问正方形的边长是多少?例 2 甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行一周要 36 分钟,乙车行一周要 30 分钟,丙车行一周要 48 分钟,三辆汽车同时从同一个起点出发,问至少要多少时间这三辆汽车才能同时又在起点相遇?例 3 一个四边形广场,边长分别为 60 米,72 米,96 米,84 米,现要在四角和四边植树,若四边上每两棵树间距相等,至少要植多少棵树?例 4 一盒围棋子,4 个 4 个地数多 1 个,5 个 5 个地数多 1 个,6 个 6 个地数还多 1 个。又知棋子总数在 150 到 200 之间

38、,求棋子总数。26、最值问题 【含义】 科学的发展观认为,国民经济的发展既要讲求效率,又要节约能源,要少花钱多办事,办好事,以最小的代价取得最大的效益。这类应用题叫做最值问题。【数量关系】一般是求最大值或最小值。 【解题思路和方法】 按照题目的要求,求出最大值或最小值。例 1 在火炉上烤饼,饼的两面都要烤,每烤一面需要 3 分钟,炉上只能同时放两块饼,现在需要烤三块饼,最少需要多少分钟?例 2 在一条公路上有五个卸煤场,每相邻两个之间的距离都是 10 千米,已知 1 号煤场存煤 100 吨,2 号煤场存煤 200 吨,5 号煤场存煤 400 吨,其余两个煤场是空的。现在要把所有的煤集中到一个煤

39、场里,每吨煤运 1 千米花费 1元,集中到几号煤场花费最少?例 3 北京和上海同时制成计算机若干台,北京可调运外地 10 台,上海可调运外地 4 台。现决定给重庆调运 8 台,给武汉调运 6 台,若每台运费如右表,问如何调运才使运费最省? 27、列方程问题【含义】 把应用题中的未知数用字母 代替,根据等量关系列出含有未知数的等式方程,通过解这个方程而得到应用题的答案,这个过程,就叫做列方程解应用题。【数量关系】方程的等号两边数量相等。【解题思路和方法】 可以概括为“审、设、列、解、验、答”六字法。(1)审:认真审题,弄清应用题中的已知量和未知量各是什么,问题中的等量关系是什么。(2)设:把应用

40、题中的未知数设为 。(3)列;根据所设的未知数和题目中的已知条件,按照等量关系列出方程。(4)解;求出所列方程的解。(5)验:检验方程的解是否正确,是否符合题意。(6)答:回答题目所问,也就是写出答问的话。同学们在列方程解应用题时,一般只写出四项内容,即设未知数、列方程、解方程、答语。设未知数时要在 后面写上单位名称,在方程中已知数和未知数都不带单位名称,求出的 值也不带单位名称,在答语中要写出单位名称。检验的过程不必写出,但必须检验。 例 1 甲乙两班共 90 人,甲班比乙班人数的 2 倍少 30 人,求两班各有多少人?例 2 鸡兔 35 只,共有 94 只脚,问有多少兔?多少鸡?例 3 仓库里有化肥 940 袋,两辆汽车 4 次可以运完,已知甲汽车每次运 125 袋,乙汽车每次运多少袋?

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报