1、1第 1章 二次函数1.1 二次函数(见 A本 1页)A 练就好基础 基础达标1下列函数中属于二次函数的是( B )Ayx By3(x1) 212Cy(x1) 2x 2 Dy x1x22下列函数关系中,一定可以看作二次函数 yax 2bxc(a0)模型的是( C )A在一定的距离内汽车的行驶速度与行驶时间的关系B我国人口年自然增长率为 1%,我国人口总数与年份的关系 C一根长为 l (cm)的铁丝围成一个正方形,正方形的面积 S (cm2)与 l (cm)的关系 D圆的周长与圆的半径之间的关系3已知函数 yx 23xm,当 x2 时,y 的值为3,则当 x4 时,y 的值为( A )A3 B3
2、 C4 D44在一定条件下,若物体运动的路程 s(m)与时间 t(s)的关系式为 s5t 22t,则当t4 (s)时,该物体运动的路程为( D )A28 m B48 m C68 m D88 m5函数 y (x2) 22 化为 yax 2bxc 的形式是_yx 24x2_,其中二次项系数是_1_,一次项系数是_4_, 常数项是_2_6已知函数 y(m2)x 2mx3(m 为常数)(1)当 m满足_m2_时,该函数为二次函数(2)当 m满足_m2_时,该函数为一次函数7已知二次函数 yx 2bxc,当 x1 时,y0;当 x3 时,y0.求当x2 时,y 的值解:根据题意,得 解得 1 b c 0
3、,9 3b c 0, ) b 2,c 3, )yx 22x3,当 x2 时,y5.8已知函数 y(m2)xm 23m4 是二次函数,求 m的值并写出此函数的解析式解:由题意,得 m 2 0,m2 3m 4 2.)2解得 m1;此函数的解析式为 yx 2.9如图所示,要建一个三面用木板围成的矩形仓库,已知矩形仓库一边靠墙(墙长 16 m),并在与墙平行的一边开一道 1 m宽的门,现在可围的材料为 32 m长的木板,若设与墙平行的一边长为 x m,仓库的面积为 y m2.(1)求 y与 x之间的函数关系式,并写出自变量 x的取值范围;(2)当 x4 时,求 y的值. 第 9题图解:(1)yx ,化
4、简,得 y0.5x 216.5x(1x16)33 x2(2)当 x4 时,y4 58.33 42B 更上一层楼 能力提升10将某一个 x的值与 y0 代入二次函数 yax 2bxc,得 4a2bc0,则此 x的值为( D )A B. C2 D212 1211一台机器原价为 60万元,如果每年折旧率均为 x,两年后这台机器的价格约为 y万元,则 y与 x的函数表达式为( A )Ay60(1x) 2 By60(1x) Cy60x 2 Dy60(1x) 212正方形的边长为 3,若边长增加 x,那么面积增加 y,则 y关于 x的函数表达式为( C )Ayx 29 By(x3) 2 Cyx 26x D
5、y93x 213已知在ABC 中,B30,ABBC12,设 ABx,ABC 的面积是 S.(1)求面积 S关于 x的函数解析式,并写出自变量 x的取值范围(2)当 AB2BC 时,求 S的值第 13题答图解:(1)如图,作ABC 的高 AD.在ABD 中,ADB90,B30,AD AB x,12 12S ABC BCAD (12x) x x23x,12 12 12 14面积 S关于 x的函数解析式为 S x23x(0x12)14(2)当 AB2BC 时,x8,S 82388.14C 开拓新思路 拓展创新14已知 yy 1y 2,y 1与 x2成正比例,y 2与 x2 成正比例,当 x1 时,y
6、1,当3x1 时,y5.(1)求 y与 x的函数关系式;(2)求 x2 时,y 的值解:(1)由题意,设:y 1k 1x2,y 2k 2(x2),yk 1x2k 2(x2),将 x1,y1;x1,y5 代入上式,得 解得 k14,k 23.k1 k2 1,k1 3k2 5, )y4x 23x6.(2)当 x2 时,y443(2)64.15已知函数 y 求出当 y6 时,自变量 x的值x2 2( x 2) ,2x( x2) , )解:当 x226 时,解得 x2,x2,x2;当 2x6 时,解得 x3,x2,x3.自变量 x的值为2 或 3.16某玩具厂计划生产一种玩具熊猫,每日最高产量为 40
7、只,且每天产出的产品全部售出,已知生产 x只熊猫玩具的成本为 R(元),售价每只为 P(元),且 R,P 与 x的关系式分别为 R50030x,P1702x.(1)每日的利润 W是关于日产量 x的二次函数吗?(2)当日产量为多少时,每日获得的利润为 1750元?解:(1)由题意,得生产 x只玩具熊猫的成本为 R(元),售价每只为 P(元),且 R,P与 x的关系式分别为 R50030x,P1702x,W(1702x)x(50030x)2x 2140x500.W 是 x的二次函数(2)当 W1750 时,(1702x)x(50030x)1750,解得 x 125,x 245(大于每日最高产量为 40只,舍去)答:当日产量为 25只时,每日获得的利润为 1750元