1、 八年级数学三角形知识点归纳一、与三角形有关的线段1、不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形2、等边三角形:三边都相等的三角形3、等腰三角形:有两条边相等的三角形4、不等边三角形:三边都不相等的三角形5、在等腰三角形中,相等的两边都叫腰,另一边叫底,两腰的夹角叫做顶角,腰和底边的夹角叫做底角6、三角形分类:不等边三角形等腰三角形:底边和腰不等的等腰三角形等边三角形7、三角形两边之和大于第三边,两边之差小于第三边注:1)在实际运用中,只需检验最短的两边之和大于第三边,则可说明能组成三角形2)在实际运用中,已经两边,则第三边的取值范围为:两边之差第三边两边之和3)所有通过周长相
2、加减求三角形的边,求出两个答案的,注意检查每个答案能否组成三角形8、三角形的高:从ABC 的顶点 A 向它所对的边 BC 所在的直线画垂线,垂足为 D,所得线段 AD 叫做ABC 的边 BC 上的高9、三角形的中线:连接ABC 的顶点 A 和它所对的边 BC 的中点 D,所得线段 AD 叫做ABC 的边 BC 上的中线注:两个三角形周长之差为 x,则存在两种可能:即可能是第一个周长大,也有可能是第一个周长小10、三角形的角平分线:画A 的平分线 AD,交A 所对的边 BC 于 D,所得线段 AD叫做ABC 的角平分线11、三角形的稳定性,四边形没有稳定性二、与三角形有关的角1、三角形内角和定理
3、:三角形三个内角的和等于 180 度。证明方法:利用平行线性质2、三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角3、三角形的一个外角等于与它不相邻的两个内角的和4、三角形的一个外角大于与它不相邻的任何一个内角5、三角形的外角和为 360 度6、等腰三角形两个底角相等三、多边形及其内角和1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形2、N 边形:如果一个多边形由 N 条线段组成,那么这个多边形就叫做 N 边形。3、内角:多边形相邻两边组成的角叫做它的内角4、外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角5、对角线:连接多边形不相邻的两个顶点的线
4、段,叫做多边形的对角线6、正多边形:各个角都相等,各条边都相等的多边形叫做正多边形7、多边形的内角和:n 边形内角和等于(n-2)*1808、多边形的外角和:360 度注:有些题,利用外角和,能提升解题速度9、从 n 边形的一个顶点出发,可以引 n-3 条对角线,它们将 n 边形分成 n-2 个注:探索题型中,一定要注意是否是从 N 边形顶点出发,不要盲目背诵答案10、从 n 边形的一个顶点出发,可以引 n-3 条对角线,n 边形共有对角线23)-(条。全等三角形复习一、全等三角形能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。2、全等三角形有哪些性质
5、(1):全等三角形的对应边相等、对应角相等。(2):全等三角形的周长相等、面积相等。(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:方 法 指 引证 明 两 个 三 角 形 全 等
6、的 基 本 思 路 :( 1) : 已 知 两 边 -找 第 三 边 (SSS)找 夹 角 ( SAS)(2):已 知 一 边 一 角 -已 知 一 边 和 它 的 邻 角找 是 否 有 直 角 (HL)已 知 一 边 和 它 的 对 角找 这 边 的 另 一 个 邻 角 (ASA)找 这 个 角 的 另 一 个 边 (SAS)找 这 边 的 对 角 (AAS)找 一 角 (AAS)已 知 角 是 直 角 , 找 一 边 (HL)(3):已 知 两 角 - 找 两 角 的 夹 边 (ASA)找 夹 边 外 的 任 意 边 (AAS)练 习二、角的平分线: 熟悉基本图形1、 (性质)角的平分线上
7、的点到角的两边的距离相等.2、 (判定)角的内部到角的两边的距离相等的点在角的平分线上。三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“ 对边 ”, “对应角”与 “对角” 的不同含义;(2 表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3) “有三个角对应相等” 或“有两边及其中一边的对角对应相等 ”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如 “公共角” 、 “公共边 ”、 “对顶角”轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图
8、形关于这条直线(成轴)对称。2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点3、轴对称图形和轴对称的区别与联系 3、 轴 对 称 图 形 和 轴 对 称 的 区 别 与 联 系轴 对 称 图 形 轴 对 称区 别联 系图 形(1)轴 对 称 图 形 是 指 ( )具 有 特 殊 形 状 的 图 形 ,只 对 ( )图 形 而 言 ;(2)对 称 轴 ( )只 有 一 条(1)轴 对 称 是 指 ( )图 形的 位 置 关 系 ,必 须 涉 及( )图 形 ;(2)只 有 ( )对 称 轴
9、.如 果 把 轴 对 称 图 形 沿 对 称 轴分 成 两 部 分 ,那 么 这 两 个 图 形就 关 于 这 条 直 线 成 轴 对 称 .如 果 把 两 个 成 轴 对 称 的 图 形拼 在 一 起 看 成 一 个 整 体 ,那么 它 就 是 一 个 轴 对 称 图 形 .B CAC BAAB C一 个一 个不 一 定 两 个两 个一 条知 识 回 顾 :4.轴对称的性质关于某直线对称的两个图形是全等形。 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。如果两个图形的对应点连线被同条直线垂直平分,那么这
10、两个图形关于这条直线对称。二、线段的垂直平分线 熟悉基本图形 比较区分角平分线模型1. 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。2.线段垂直平分线上的点与这条线段的两个端点的距离相等 3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结: 在平面直角坐标系中,关于 x 轴对称的点横坐标相等,纵坐标互为相反数.关于 y 轴对称的点横坐标互为相反数,纵坐标相等.点(x, y)关于 x 轴对称的点的坐标为_.点(x, y)关于 y 轴对称的点的坐标为_.2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等四、 (等腰三角形)知识点回顾1.等腰三角形的性质.等腰三角形的两个底角相等。 (等边对等角).等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。 (三线合一)2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。 (等角对等边)五、 (等边三角形)知识点回顾1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于 600 。2、等边三角形的判定:三个角都相等的三角形是等边三角形。有一个角是 600 的等腰三角形是等边三角形。3.在直角三角形中,如果一个锐角等于 300,那么它所对的直角边等于斜边的一半。4.直角三角形,斜边上的中线等于斜边的一半、