1、,在数字集成电路的发展过程中,同时存在着两种器件的发展。一种是由三极管组成的双极型集成电路,例如晶体管晶体管逻辑电路(简称TTL电路) 。另一种是由MOS管组成的单极型集成电路,例如NMOS逻辑电路和互补MOS(简称CMOS)逻辑电路。,第3章 集成逻辑门,TTL系列逻辑电路出现在19世纪60年代, 它在此之前占据了数字集成电路的主导地位. 随着计算技术和半导体技术的发展,19世纪80 年代中期出现了CMOS电路。虽然它出现晚 一些,但因为它有效地克服了TTL和ECL集成 电路中存在的单元电路结构复杂,器件之间需 要外加电隔离,以及功耗大,影响电路集成密 度提高的严重缺点 ,因而在向大规模和超
2、大 规模集成电路的发展中,CMOS集成电路已占 有统治地位,而且这一优势将继续延伸。,3.1 晶体管的开关特性 3.2 基本逻辑门电路 3.3 TTL集成逻辑门 3.4 MOS逻辑门电路 3.5 集成逻辑门电路的应用,本章知识结构,第3章 集成逻辑门 3.1 晶体管的开关特性,晶体二极管开关特性晶体二极管是由PN结构成,具有单向导电的特性。在近似的开关电路分析中,晶体二极管可以作为一个理想开关来分析;在严格的电路分析中或者在高速开关电路中,晶体二极管则不能当作一个理想开关。,注意,数字电路中的二极管与三极管 一、二极管伏安特性,第3章 集成逻辑门 3.1 晶体管的开关特性,(a)二极管电路表示
3、,(b)二极管伏安特性,(1)加正向电压VF时,二极管导通,管压降VD可忽略。二极管相当于一个闭合的开关。,二、二极管的开关特性,1二极管的静态特性,第3章 集成逻辑门 3.1 晶体管的开关特性,可见,二极管在电路中表现为一个受外加电压vi控制的开关。当外加电压vi为一脉冲信号时,二极管将随着脉冲电压的变化在“开”态与“关”态之间转换。这个转换过程就是二极管开关的动态特性。,(2)加反向电压VR时,二极管截止,反向电流IS可忽略。二极管相当于一个断开的开关。,2二极管开关的动态特性,给二极管电路加入 一个方波信号,电流的 波形怎样呢?,ts为存储时间,tt称为渡越时间,trets十tt称为反向
4、恢复时间。,反向恢复时间:trets十tt,产生反向恢复过程的原因: 反向恢复时间tre就是存储电荷消散所需要的时间。,同理,二极管从截止转为正向导通也需要时间,这段时间称为开通时间。开通时间比反向恢复时间要小得多,一般可以忽略不计。,第3章 集成逻辑门 三、晶体三极管的开关特性,基本单管共射电路,单管共射电路传输特性,1.三极管稳态开关特性,三、三极管的开关特性,三极管的三种工作状态,(1)截止状态:当VI小于三极管发射结死区电压时,IBICBO0,ICICEO0,VCEVCC,三极管工作在截止区,对应图1.4.5(b)中的A点。三极管工作在截止状态的条件为:发射结反偏或小于死区电压,此时,
5、若调节Rb,则IB,IC,VCE,工作点沿着负载线由A点B点C点D点向上移动。在此期间,三极管工作在放大区,其特点为ICIB。三极管工作在放大状态的条件为:发射结正偏,集电结反偏,(2)放大状态:当VI为正值且大于死区电压时,三极管导通。有,若再减小Rb,IB会继续增加,但IC已接近于最大值VCC/RC,不会再增加,三极管进入饱和状态。饱和时的VCE电压称为饱和压降VCES,其典型值为:VCES0.3V。三极管工作在饱和状态的电流条件为:IB IBS 电压条件为:集电结和发射结均正偏,(3)饱和状态:保持VI不变,继续减小Rb,当VCE 0.7V时,集电结变为零偏,称为临界饱和状态,对应图(b
6、)中的E点。此时的集电极电流称为集电极饱和电流,用ICS表示,基极电流称为基极临界饱和电流,用IBS表示,有:,解: 根据饱和条件IBIBS解题。,例1.4.1 电路及参数如图1.4.6所示,设输入电压VI=3V,三极管的VBE=0.7V。 (1)若60,试判断三极管是否饱和,并求出IC和VO的值。,(2)将RC改为6.8kW,重复以上计算。,IBIBS 三极管饱和。,IB不变,仍为0.023mA,IBIBS 三极管处在放大状态。,(3)将RC改为6.8kW,再将Rb改为60kW,重复以上计算。,由上例可见,Rb 、RC 、等参数都能决定三极管是否饱和。 则该电路的饱和条件可写为:,即在VI一
7、定(要保证发射结正偏)和VCC一定的条件下,Rb越小,越大,RC越大,三极管越容易饱和。在数字电路中总是合理地选择这几个参数,使三极管在导通时为饱和导通。,IBS0.029 mA,IBIBS 三极管饱和。,2三极管的动态特性,(1)延迟时间td从输入信号vi正跳变的瞬间开始,到集电极电流iC 上升到0.1ICS所需的时间 (2)上升时间tr 集电极电流从0.1ICS上 升到0.9ICS所需的时间。 (3)存储时间ts 从输入信号vi下跳变的 瞬间开始,到集电极电流iC 下降到0.9ICS所需的时间。 (4)下降时间tf 集电极电流从0.9ICS下降 到0.1ICS所需的时间。,一、二极管与门和
8、或门电路 1与门电路,3.2 基本逻辑门电路,第3章 集成逻辑门,2或门电路,二、三极管非门电路,二极管与门和或门电路的缺点: (1)在多个门串接使用时,会出现低电平偏离标准数值的情况。 (2)负载能力差,解决办法: 将二极管与门(或门)电路和三极管非门电路组合起来。,三、DTL与非门电路,工作原理:(1)当A、B、C全接为高电平5V时,二极管D1D3都截止,而D4、D5和T导通,且T为饱和导通, VL=0.3V,即输出低电平。 (2)A、B、C中只要有一个为低电平0.3V时,则VP1V,从而使D4、D5和T都截止,VL=VCC=5V,即输出高电平。 所以该电路满足与非逻辑关系,即:,3.3
9、TTL逻辑门电路,一、TTL与非门的基本结构及工作原理 1TTL与非门的基本结构,2TTL与非门的逻辑关系,(1)输入全为高电平3.6V时。T2、T3导通,VB1=0.73=2.1(V ), 由于T3饱和导通,输出电压为:VO=VCES30.3V 这时T2也饱和导通, 故有VC2=VE2+ VCE2=1V。 使T4和二极管D都截止。 实现了与非门的逻辑功能之一: 输入全为高电平时, 输出为低电平。,该发射结导通,VB1=1V。所以T2、T3都截止。由于T2截止,流过RC2的电流较小,可以忽略,所以VB4VCC=5V ,使T4和D导通,则有:VOVCC-VBE4-VD=5-0.7-0.7=3.6
10、(V) 实现了与非门的逻辑功能的另一方面: 输入有低电平时,输出为高电平。 综合上述两种情况, 该电路满足与非的 逻辑功能,即:,(2)输入有低电平0.3V 时。,二、TTL与非门的开关速度,1TTL与非门提高工作速度的原理 (1)采用多发射极三极管加快了存储电荷的消散过程。,(2)采用了推拉式输出级,输出阻抗比较小,可迅速给负载电容充放电。,2TTL与非门传输延迟时间tpd,导通延迟时间tPHL从输入波形上升沿的中点到输出波形下降沿的中点所经历的时间。 截止延迟时间tPLH从输入波形下降沿的中点到输出波形上升沿的中点所经历的时间。 与非门的传输延迟时间tpd是tPHL和tPLH的平均值。即,
11、一般TTL与非门传输延迟时间tpd的值为几纳秒十几个纳秒。,三、TTL与非门的电压传输特性及抗干扰能力,1电压传输特性曲线:Vo=f(Vi),(1)输出高电平电压VOH在正逻辑体制中代表逻辑“1”的输出电压。VOH的理论值为3.6V,产品规定输出高电压的最小值VOH(min)=2.4V。 (2)输出低电平电压VOL在正逻辑体制中代表逻辑“0”的输出电压。VOL的理论值为0.3V,产品规定输出低电压的最大值VOL(max)=0.4V。 (3)关门电平电压VOFF是指输出电压下降到VOH(min)时对应的输入电压。即输入低电压的最大值。在产品手册中常称为输入低电平电压,用VIL(max)表示。产品
12、规定VIL(max)=0.8V。 (4)开门电平电压VON是指输出电压下降到VOL(max)时对应的输入电压。即输入高电压的最小值。在产品手册中常称为输入高电平电压,用VIH(min)表示。产品规定VIH(min)=2V。 (5)阈值电压Vth电压传输特性的过渡区所对应的输入电压,即决定电路截止和导通的分界线,也是决定输出高、低电压的分界线。近似地:VthVOFFVON即ViVth,与非门关门,输出高电平;ViVth,与非门开门,输出低电平。Vth又常被形象化地称为门槛电压。Vth的值为1.3V1.V。,2几个重要参数,低电平噪声容限 VNLVOFF-VIL0.8V-0.4V0.4V 高电平噪
13、声容限 VNHVIH-VON2.4V-2.0V0.4V,TTL门电路的输出高低电平不是一个值,而是一个范围。同样,它的输入高低电平也有一个范围,即它的输入信号允许一定的容差,称为噪声容限。,3抗干扰能力,四、TTL与非门的带负载能力,1输入低电平电流IIL与输入高电平电流IIH (1)输入低电平电流IIL是指当门电路的输入端接低电平时,从门电路输入端流出的电流。,可以算出:,产品规定IIL1.6mA。,(2)输入高电平电流IIH是指当门电路的输入端接高电平时,流入输入端的电流。有两种情况。,寄生三极管效应:如图(a)所示。这时IIH=PIB1,P为寄生三极管的电流放大系数。,由于p和i的值都远
14、小于1, 所以IIH的数值比较小,产品规定:IIH40uA。,倒置的放大状态:如图(b)所示。这时IIH=iIB1,i为倒置放大的电流放大系数。,(1)灌电流负载,2带负载能力,当驱动门输出低电平时,电流从负载门灌入驱动门。当负载门的个数增加,灌电流增大,会使T3脱离饱和,输出低电平升高。因此,把允许灌入输出端的电流定义为输出低电平电流IOL,产品规定IOL=16mA。由此可得出:,NOL称为输出低电平时的扇出系数。,(2)拉电流负载。,NOH称为输出高电平时的扇出系数。,产品规定IOH=0.4mA。由此可得出:,当驱动门输出高电平时,电流从驱动门拉出,流至负载门的输入端。拉电流增大时,RC4
15、上的压降增大,会使输出高电平降低。因此,把允许拉出输出端的电流定义为输出高电平电流IOH。,一般NOLNOH,常取两者中的较小值作为门电路的扇出系数,用NO表示。,五、TTL与非门举例7400,7400是一种典型的TTL与非门器件,内部含有4个2输入端与非门,共有14个引脚。引脚排列图如图所示。,六、 TTL门电路的其他类型,1非门,2或非门,3与或非门,在工程实践中,有时需要将几个门的输出端并联使用,以实现与逻辑,称为线与。普通的TTL门电路不能进行线与。为此,专门生产了一种可以进行线与的门电路集电极开路门。,4集电极开路门( OC门),(1)实现线与。 电路如右图所示,逻辑关系为:,OC门
16、主要有以下几方面的应用:,(2)实现电平转换。 如图示,可使输出高电平变为10V。,(3)用做驱动器。 如图是用来驱动发光二极管的电路。,(1)当输出高电平时,RP不能太大。RP为最大值时要保证输出电压为VOH(min),由,OC门进行线与时,外接上拉电阻RP的选择:,得:,得:,(2)当输出低电平时, RP不能太小。RP为最小值时要保证输出电压为VOL(max), 由,所以: RP(min)RPRP(max),(1)三态输出门的结构及工作原理。 当EN=0时,G输出为1,D1截止,相当于一个正常的二输入端与非门,称为正常工作状态。 当EN=1时,G输出为0,T4、T3都截止。这时从输出端L看
17、进去,呈现高阻,称为高阻态,或禁止态。,5三态输出门,EN=0时,L=,EN=1时,L=,三态门在计算机总线结构中有着广泛的应用。 (a)组成单向总线, 实现信号的分时单向传送.,(b)组成双向总线, 实现信号的分时双向传送。,(2)三态门的应用,574LS系列为低功耗肖特基系列。 674AS系列为先进肖特基系列, 它是74S系列的后继产品。 774ALS系列为先进低 功耗肖特基系列, 是74LS系列的后继产品。,七、TTL集成逻辑门电路系列简介 174系列为TTL集成电路的早期产品,属中速TTL器件。 274L系列为低功耗TTL系列,又称LTTL系列。 374H系列为高速TTL系列。 474
18、S系列为肖特基TTL系列,进一步提高了速度。如图示。,所以输出为低电平。,一、 NMOS门电路 1NMOS非门,3.4 MOS逻辑门电路,逻辑关系:(设两管的开启电压为VT1=VT2=4V,且gm1gm2 ) (1)当输入Vi为高电平8V时,T1导通,T2也导通。因为gm1gm2,所以两管的导通电阻RDS1RDS2,输出电压为:,(2)当输入Vi为低电平0V时, T1截止,T2导通。所以输出电压为VOH=VDD-VT=8V,即输出为高电平。 所以电路实现了非逻辑。,2NMOS门电路 (1)与非门,(2)或非门,1逻辑关系: (设VDD(VTN+|VTP|),且VTN=|VTP|) (1)当Vi
19、=0V时,TN截止,TP导通。输出VOVDD。 (2)当Vi=VDD时,TN导通,TP截止,输出VO0V。,二、CMOS非门,CMOS逻辑门电路是由N沟道MOSFET和P沟道MOSFET互补而成。,(1)当Vi2V,TN截止,TP导通,输出VoVDD=10V。 (2)当2VVi5V,TN工作在饱和区,TP工作在可变电阻区。 (3)当Vi=5V,两管都工作在饱和区,Vo=(VDD/2)=5V。 (4)当5VVi8V,TP工作在饱和区,TN工作在可变电阻区。 (5)当Vi8V,TP截止,TN导通,输出Vo=0V。可见:CMOS门电路的阈值电压Vth=VDD/2,2电压传输特性:(设: VDD=10
20、V, VTN=|VTP|=2V),3工作速度,由于CMOS非门电路工作时总有一个管子导通,所以当带电容负载时,给电容充电和放电都比较快。CMOS非门的平均传输延迟时间约为10ns。,(2)或非门,三、其他的CMOS门电路,1CMOS与非门和或非门电路 (1)与非门,(3)带缓冲级的门电路为了稳定输出高低电平,可在输入输出端分别加反相器作缓冲级。下图所示为带缓冲级的二输入端与非门电路。L=,后级为与或非门,经过逻辑变换,可得:,2CMOS异或门电路,由两级组成,前级为或非门,输出为,当EN=1时,TP2和TN2同时截止,输出为高阻状态。 所以,这是一个低电平有效的三态门。,3 CMOS三态门,工
21、作原理: 当EN=0时,TP2和TN2同时导通,为正常的非门,输出,4 CMOS传输门 工作原理:(设两管的开启电压VTN=|VTP|) (1)当C接高电平VDD, 接低电平0V时,若Vi在0VVDD的范围变化,至少有一管导通,相当于一闭合开关,将输入传到输出,即Vo=Vi。 (2)当C接低电平0V, 接高电平VDD,Vi在0VVDD的范围变化时,TN和TP都截止,输出呈高阻状态,相当于开关断开。,1CMOS逻辑门电路的系列 (1)基本的CMOS4000系列。 (2)高速的CMOSHC系列。 (3)与TTL兼容的高速CMOSHCT系列。 2CMOS逻辑门电路主要参数的特点 (1)VOH(min
22、)=0.9VDD; VOL(max)=0.01VDD。 所以CMOS门电路的逻辑摆幅(即高低电平之差)较大。 (2)阈值电压Vth约为VDD/2。 (3)CMOS非门的关门电平VOFF为0.45VDD,开门电平VON为0.55VDD。因此,其高、低电平噪声容限均达0.45VDD。 (4)CMOS电路的功耗很小,一般小于1 mW/门; (5)因CMOS电路有极高的输入阻抗,故其扇出系数很大,可达50。,四、 CMOS逻辑门电路的系列及主要参数,一、TTL与CMOS器件之间的接口问题两种不同类型的集成电路相互连接,驱动门必须要为负载门提供符合要求的高低电平和足够的输入电流,即要满足下列条件:驱动门
23、的VOH(min)负载门的VIH(min) 驱动门的VOL(max)负载门的VIL(max) 驱动门的IOH(max)负载门的IIH(总)驱动门的IOL(max)负载门的IIL(总),3.5 集成逻辑门电路的应用,(b)用TTL门电路驱动5V低电流继电器,其中二极管D作保护,用以防止过电压。,二、TTL和CMOS电路带负载时的接口问题,1对于电流较小、电平能够匹配的负载可以直接驱动。(a)用TTL门电路驱动发光二极管LED,这时只要在电路中串接一个约几百W的限流电阻即可。,2带大电流负载,(a)可将同一芯片上的多个门并联作为驱动器,如图(a)所示。,(b)也可在门电路输出端接三极管,以提高负载
24、能力,如图(b)所示。,(2)对于或非门及或门,多余输入端应接低电平,比如直接接地;也可以与有用的输入端并联使用。,三、多余输入端的处理,(1)对于与非门及与门,多余输入端应接高电平,比如直接接电源正端,或通过一个上拉电阻(13kW)接电源正端;在前级驱动能力允许时,也可以与有用的输入端并联使用。,3一端消去或加上小圆圈,同时将相应变量取反,其逻辑关系不变。,2任一条线一端上的小圆圈移到另一端,其逻辑关系不变。,2.5 混合逻辑中逻辑符号的变换,1逻辑图中任一条线的两端同时加上或消去小圆圈,其逻辑关系不变。,本章小结1最简单的门电路是二极管与门、或门和三极管非门。它们是集成逻辑门电路的基础。2
25、目前普遍使用的数字集成电路主要有两大类,一类由NPN型三极管组成,简称TTL集成电路;另一类由MOSFET构成,简称MOS集成电路。3TTL集成逻辑门电路的输入级采用多发射极三级管、输出级采用达林顿结构,这不仅提高了门电路的开关速度,也使电路有较强的驱动负载的能力。在TTL系列中,除了有实现各种基本逻辑功能的门电路以外,还有集电极开路门和三态门。4MOS集成电路常用的是两种结构。一种是NMOS门电路,另一类是CMOS门电路。与TTL门电路相比,它的优点是功耗低,扇出数大,噪声容限大,开关速度与TTL接近,已成为数字集成电路的发展方向。5为了更好地使用数字集成芯片,应熟悉TTL和CMOS各个系列产品的外部电气特性及主要参数,还应能正确处理多余输入端,能正确解决不同类型电路间的接口问题及抗干扰问题。,