1、1一次函数与反比例函数的综合(2018遂宁)(2018十堰)14.(2018宜宾)已知:点 P(m,n)在直线 y = x+2 上,也在双曲线 y = 上,则 m2+n2的值为 . 1x(2018 安顺)(2018 黄石)知一次函数 和反比例函数 的图象在平面直角坐标系中交于 A、B 两点,当13yx24yx时, 的取值范围是12yxA. 或 B. 或402C. 或 D. 或10x41x04x(2018巴中)(2018广安)(2018遂宁)3(2018 恩施)如图,直线 交 轴于点 ,交 轴于点 ,与反比例函数 的图象有唯一的公共24yxAyBkyx点 .C(1)求 的值及 点坐标;kC(2)
2、直线 与直线 关于 轴对称,且与 轴交于点 ,与双曲线 交于 、 两点,求l24yxyB6yxDE的面积.DE(2018 北京)在平面直角坐标系 xOy中,函数 y= (x0)的图象 G经过点 A(4,1),直线 L:y = +b与图象 G交于点 B,与 y轴交于点 C(1)求 k的值;4(2)横、纵坐标都是整数的点叫做整点.记图象 G在点 A,B 之间的部分与线段 OA,OC,BC 围成的区域(不含边界)为 w.当 b=-1时,直接写出区域 W内的整点个数;若区域 W内恰有 4个整点,结合函数图象,求 b的取值范围(2018襄阳)(2018 新疆建设兵团)(2018黄冈)5(2018咸宁)(
3、2018德阳)621 (2018仙桃) (满分 8分)如图,在平面直角坐标系中,直线 与反比例函数 y (k 0)在第二y12xx象限内的图象相交于点 A(m,1). (1)求反比例函数的解析式;(2)将直线 y x向上平移后与反比例函数 图象在第二象限内交于点 B,与 y轴交于2点 C,且ABO 的面积为 ,求直线 BC的解析式325.(2018白银)如图,一次函数 的图象与反比例函数 ( 为常数且 )的图象交于4yxkyx0k, 两点,与 轴交于点 .(1,)AaBxC7(1)求此反比例函数的表达式;(2)若点 在 轴上,且 ,求点 的坐标.Px32ACPBOCSP(2018岳阳)24、(
4、本题满分 8分),如图已知函数 的图象与一次函数 的图象相交不同的(0,)kyx5(0)ymx点 A、B,过点 A作 AD 轴于 点 D,连接 AO,其中点 A的横坐标为 ,AOD 的面积为 2。x 0x(1)求 的值及 =4时 的值;k0m(2)记 表示为不超过 的最大整数,例如: , ,设 ,若 ,求xx1.4 2 .tODC3524m值2mtAxy CBDEAO8(2018潍坊)21. (2018淄博) (本小题满分 8分)如图,直线 都与双曲线 交于点 ,这两条直线分别与 轴交于 两点.1234,yxxbkyx1,Amx,BC(1)求 与 之间的函数关系式;(2)直接写出当 时,不等式
5、 的解集;0(3)若点 在 轴上,连接 把 的面积分成 1:3两部分,求此时点 的坐标.PxAPBCP20.(2018常德)如图 7,已知一次函数 与反比例函数 的图像交于 ,11(0)ykxb2(0)kyx(4,1)A两点.(,2)Bn9(1)求一次函数与反比例函数的解析式;(2) 请根据图像直接写出 时 的取值范围.12yx22 (2018宜宾)(本小题 l0分) (注意:在试题卷上作答无效)如图,已知反比例函数 y = (m0)的图象经过点(1 ,4),一次函数 y = - x+b 的图象经过反比例函mx数图象上的点 Q(-4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与 x轴、y 轴交于 A、B 两点,与反比例函数图象的另一个交点为 P点,连结 OP、OQ,求OPQ 的面积. y xQPBAO(2018连云港)10(2018衡阳)23.(2018泸州) 一次函数 的图象经过点 A(-2,12),B(8,-3) .ykxb(1)求该一次函数的解析式;(2)如图 9,该一次函数的图象与反比例函数 ( )的图象相交于点 C( ) ,myx01,xyD( ) ,与 轴交于点 E,且 CD=CE,求 的值.2,xyxyODCE(2018成都)11(2018枣庄)12(2018宁波)(2018南充)(2018滨州)13(2018绵阳)