1、27.2 与圆有关的位置关系,1.点和圆的位置关系,第27章 圆,导入新课,讲授新课,当堂练习,课堂小结,1.理解并掌握点和圆的三种位置关系.(重点) 2.理解不在同一直线上的三个点确定一个圆及其运用.(重点) 3.了解三角形的外接圆和三角形外心的概念.,学习目标,导入新课,你玩过飞镖吗?它的靶子是由一些圆组成的,你知道击中靶子上不同位置的成绩是如何计算的吗?,情境引入,问题1:观察下图中点和圆的位置关系有哪几种?,.,C,.,.,.,. B,.,.A,.,点与圆的位置关系有三种: 点在圆内,点在圆上,点在圆外.,问题2:设点到圆心的距离为d,圆的半径为r,量一量在点和圆三种不同位置关系时,d
2、与r有怎样的数量关系?,点P在O内,点P在O上,点P在O外,d,d,d,r,P,d,d,P,r,d,r,r,=,r,反过来,由d与r的数量关系,怎样判定点与圆的位置关系呢?,1.O的半径为10cm,A、B、C三点到圆心的距离分别为8cm、10cm、12cm,则点A、B、C与O的位置关系是:点A在 ;点B在 ;点C在 .,练一练:,圆内,圆上,圆外,2.圆心为O的两个同心圆,半径分别为1和2,若OP= ,则点P在( ) A.大圆内 B.小圆内 C.小圆外 D.大圆内,小圆外,D,数形结合:,位置关系,数量关系,例1:如图,已知矩形ABCD的边AB=3,AD=4.,(1)以A为圆心,4为半径作A,
3、则点B、C、D与A的位置关系如何?,解:AD=4=r,故D点在A上AB=3r,故C点在A外,(2)若以A点为圆心作A,使B、C、D三点中至少有一点在圆内,且至少有一点在圆外,求A的半径r的取值范围?(直接写出答案),3r5,变式:如图,在直角坐标系中,点A的坐标为(2,1),P是x轴上一点,要使PAO为等腰三角形,满足条件的P有几个?求出点P的坐标.,问题1如何过一个点A作一个圆?过点A可以作多少个圆?,合作探究,以不与A点重合的任意一点为圆心,以这个点到A点的距离为半径画圆即可; 可作无数个圆.,A,问题2如何过两点A、B作一个圆?过两点可以作多少 个圆?,A,B,作线段AB的垂直平分线,以
4、其上任意一点为圆心,以这点和点A或B的距离为半径画圆即可; 可作无数个圆.,问题3:过不在同一直线上的三点能不能确定一个圆?,o,经过B,C两点的圆的圆心在线段BC的垂直平分线上.,经过A,B,C三点的圆的圆心应该在这两条垂直平分线的交点O的位置.,经过A,B两点的圆的圆心在线段AB的垂直平分线上.,定理:不在同一直线上的三个点确定一个圆.,o,归纳总结,已知:不在同一直线上的三点A、B、C.求作: O,使它经过点A、B、C.,作法:1、连结AB,作线段AB的垂直平分线MN; 2、连接AC,作线段AC的垂直平分线EF,交MN于点O; 3、以O为圆心,OB为半径作圆。所以O就是所求作的圆.,O,
5、N,M,F,E,A,B,C,练一练,问题4:现在你知道怎样将一个如图所示的破损的圆盘复原了吗?,方法: 1、在圆弧上任取三点A、B、C; 2、作线段AB、BC的垂直平分线,其交点O即为圆心; 3、以点O为圆心,OC长为半径作圆. O即为所求.,A,B,C,O,某一个城市在一块空地新建了三个居民小区,它们分别为A、B、C,且三个小区不在同一直线上,要想规划一所中学,使这所中学到三个小区的距离相等。请问同学们这所中学建在哪个位置?你怎么确定这个位置呢?,B,A,C,针对训练,试一试: 已知ABC,用直尺与圆规作出过A、B、C三点的圆.,O,1. 外接圆 O叫做ABC的_, ABC叫做O的_.,到三
6、角形三个顶点的距离相等.,2.三角形的外心: 定义:,O,外接圆,内接三角形,三角形外接圆的圆心叫做三角形的外心.,作图:,三角形三边中垂线的交点.,性质:,要点归纳,判一判: 下列说法是否正确 (1)任意的一个三角形一定有一个外接圆( ) (2)任意一个圆有且只有一个内接三角形( ) (3)经过三点一定可以确定一个圆( ) (4)三角形的外心到三角形各顶点的距离相等( ),画一画:分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系.,锐角三角形的外心位于三角形内, 直角三角形的外心位于直角三角形斜边的中点, 钝角三角形的外心位于三角形外.
7、,经过三角形的三个顶点的圆叫做三角形的外接圆;外接圆的圆心叫三角形的外心;三角形的外心到三角形的三个顶点的距离相等.,要点归纳,例2:如图,将AOB置于平面直角坐标系中,O为原点,ABO60,若AOB的外接圆与y轴交于点D(0,3) (1)求DAO的度数; (2)求点A的坐标和AOB外接圆的面积,解:(1)ADOABO60, DOA90, DAO30;,典例精析,(2)求点A的坐标和AOB外接圆的面积,(2)点D的坐标是(0,3),OD3. 在直角AOD中, OAODtanADO , AD2OD6, 点A的坐标是( ,0) AOD90,AD是圆的直径, AOB外接圆的面积是9.,方法总结:图形
8、中求三角形外接圆的面积时,关键是确定外接圆的直径(或半径)长度,例3 如图,在ABC中,O是它的外心,BC24cm,O到BC的距离是5cm,求ABC的外接圆的半径,解:连接OB,过点O作ODBC.,D,则OD5cm,,在RtOBD中,即ABC的外接圆的半径为13cm.,解析:由外心的定义可知外接圆的半径等于OB,过点O作ODBC,易得BD12cm.由此可求它的外接圆的半径,1.如图,请找出图中圆的圆心,并写出你找圆心的方法?,A,B,C,O,当堂练习,2.正方形ABCD的边长为2cm,以A为圆心2cm为半径作A,则点B在A ;点C在A ;点D在A .,上,外,上,3.O的半径r为5,O为原点,
9、点P的坐标为(3,4),则点P与O的位置关系为 ( ) A.在O内 B.在O上 C.在O外 D.在O上或O外,B,4.判断: (1)经过三点一定可以作圆 ( ) (2)三角形的外心就是这个三角形两边垂直平分线的交点 ( ) (3)三角形的外心到三边的距离相等 ( ) (4)等腰三角形的外心一定在这个三角形内 ( ),5.已知:在RtABC中,C=90,AC=6,BC=8,则它的外接圆半径= .,5,6.如图,ABC内接于O,若OAB20,则C的度数是_,70,7.如图,在55正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是( ),A点P B点Q C点R D点M,B,8.小明
10、不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( ) A第块 B第块 C第块 D第块,D,2cm,3cm,9.画出由所有到已知点的距离大于或等于2cm并且小于或等于3cm的点组成的图形.,O,10.如图,已知 RtABC 中 , 若 AC=12cm,BC=5cm,求的外接圆半径.,解:设RtABC 的外接圆的外心为O,连接OC,则OA=OB=OC. O是斜边AB 的中点. C=900,AC=12cm,BC=5cm. AB=13cm,OA=6.5cm. 故RtABC 的外接圆半径为6.5cm.,能力拓展:一个812米的长方形草地,现要安装自动喷水装置,这种装置喷水的半径为5米,你准备安装几个? 怎样安装? 请说明理由.,点与圆的位置关系,位置关系数量化,作圆,过一点可以作无数个圆,过两点可以作无数个圆,定理: 过不在同一直线上的三个点确定一个圆,一个三角形的外接圆是唯一的.,注意:同一直线上的三个点不能作圆,课堂小结,见学练优本课时练习,课后作业,