1、电子教案编写者 执教 时间 年 月 日教学内容 分数除以整数(例 1、例 2)教学目标1、引导学生在具体的情景中借助已有的经验理解分数除法的意义并掌握分数除法的计算方法,能正确计算分数除以整数。2、通过富有启发性的问题情景和探索性的学习活动,引导学生主动参与、独立思考、合作交流,形成计算技能。教学重难点 1、分数除法意义的理解;2、分数除以整数的算法的探究。 修改意见教学过程一、创设情景导入:1、同学们,你们去过超市购物吗?(去过)你去买了一些什么东西呢?你有没有过相同的东西买几件的时候?能不能举个例?(指名让学生举例并用算式表示求该例的总价)二、新知探究:(一)分数除法的意义1、出示例 1
2、的教学挂图,让学生看图观察图意,指名口答图意和应该怎样列式。2、上面的问题能改编成用除法计算的问题吗?(学生独立思考,口答问题和列式)3、100g=?kg,你能将上面的问题改成用 kg 作单位的吗?(引导学生将整数乘除法应用题改变成分数乘除法应用题)4、引导学生观察比较整数乘除法的问题和改写后的问题,分析得出整数除法和分数除法的联系以及分数除法的意义。5、练习:(巩固加深对意义的理解)课本 28 页做一做。学生独立练习,订正时让学生说明为什么这样填。(二) 、分数除以整数1、小组学习活动:活动把这张纸的 4/5 平均分成 2 份,每份是这张长方形纸的几分之几?活动把这张纸的 4/5 平均分成
3、3 份,每份是这张长方形纸的几分之几?活动要求 先独立动手操作,再在组内交流:通过折纸操作和计算,你发现了什么规律?你有什么问题要提出来?2、汇报学习结果:活动 1学生甲,把 4/5 平均分成 2 份,就是把 4 个 1/5 平均分成 2 份,1 份就是 2 个 1/5,就是 2/5;用算式表示是:4/52=(42)/5=2/5学生乙,把 4/5 平均分成 2 份,每份就是 4/5 的 1/2,就是4/51/2;用算式表示是:4/51/2=4/10=2/5 ;学生丙,我发现了计算 4/52 时,可以用分子 42 作分子,分母不变;学生丁,我发现分数除以整数可能转化成乘法来计算,也就是乘以这个整
4、数的倒数;活动 2:学生甲,4 要平均分成 3 份,不能直接分,我先找出 4 和 3 的最小公倍数 12,把 4 分成 12 份,再把 12 份平均分成 3 份,算式可以用4/53 表示,4 不能够被 3 整除,这道题我不知道怎样计算;学生乙,我的分法与前面的同学相同,不同的是:我在计算 4/53时,我把 4/53 转化成 4/51/3 来计算,因为,把 4/5 平均分成 3份,就是求 4/5 的 1/3 是多少。讨论:1、从折纸实验和计算来看,你发现计算分数除以整数可以怎样计算?2、整数可以为 0 吗?小结并板书:分数除以一个不等于 0 的整数,等于分数乘以这个整数的倒数。三、巩固与提高3、
5、把 3/5 平均分成 4 份,每份是多少;什么数乘 6 等于 3/20? 4、如果 a 是一个不等于 0 的自然数,1/3a 等于多少?1/a3 等于多少?你能用一个具体的数检验上面的结果吗?四、作业练习板书设计:分数除法分数除以整数例 1 每盒水果糖重 100g,3 盒重多少 g?例 2 把一张纸的 4/5 平均分成 2 份,每份是这张纸 1003=300g1/10 3=3/10g 的几分之几?3 盒水果糖重 300g,每盒子重多少 g? 4/52=(42)/5=2/5 4/52=4/51/2=2/53003=100g3/103=1/10g 如果把这张纸的 4/5平均分成 3 份,每份是30
6、0g 水果糖,100g 装 1 盒,可以装几盒? 这张纸的几分之几?300100=3(盒)3/101/10=3(盒) 4/53=4/51/3=4/15除以一个不等于 0 的整数,等于分数乘以这个整数的倒数。反思电子教案编写者 执教 时间 年 月 日教学内容 一个数除以分数(例 3)教学目标1、通过画线段图引导学生分析并归纳一个数除以分数的计算法则。2、能运用法则,正确迅速地计算分数除法。3、培养学生抽象思维能力。教学重难点 分析并归纳一个数除以分数的计算法则,理解一个数除以分数的算理 修改意见教学过程一、复习导入1、计算:5/610 3/53 15/1620 40/3926 (说一说,你在计算
7、中如何尽量避免错误的产生?在计算中要注意什么?)2、胜利路长 1000 米,东东走完全程用了 20 分钟,东东平均每分钟行多少米?(独立解答并且说明解题依据)3、2/3 小时有()个 1/3 小时,1 小时有()个 1/3 小时。二、新知探究:1、教学例 3:小明 2/3 小时走了 2km,小红 5/12 小时走了 5/6 km,谁走得快些?师:已知什么?生:已知小明和小红各自的时间和对应的路程。师:问题求什么?生:求谁走的快些。师:求谁走得快些?就是比较什么?生:就是比较谁的速度快。师:你能根据题意列出算式吗?生:22/3 5/65/12 2、除数是分数的除法计算方法的探究:引导学生画线段图
8、分析:师:2/3 里有几个 1/3?2/3 小时走了 2 km,能不能求出 1/3 小时走多少千米?生:2/3 里有 2 个 1/3,求 1/3 小时走了多少千米可以用2 km2,也就是 2km1/2;师:2 km2 得到的 1km,有什么具体的含义?是线段图上的哪一段?生:略师:1 小时里有几个 1/3 小时,能求 1 小时行多少千米了吗?生:21/23=2 3/2=3 km。 指导学生观察:22/3=2 1/23=23/2=3( 提示:观察 22/3=23/2 这一步)师:这儿把除法转化成什么运算来计算?除以 2/3=?生:把除法转化为法来计算,除以 2/3 等于以 3/2。师:你能用自己
9、的语言叙述整数除以分数的计算方法吗?(有语言叙述、用字母表示等都行,只要是正确的都肯定学生的结论)师:请你观察上面和算式,怎样把除法转化成为乘法来进行计算?你能说出转化的要点吗?生:1、被除数没有变化;2、除号变乘号;3、除数变成了它的倒数。3、学生独立计算 5/65/12 订正并板书:4、让学生根据分数除法的意义检验后作答。三、巩固与提高:1、31 页做一做第 1 题和第 2 题的后两个小题。(做完 1 题后,让学生把每个算式完整地读一遍,然后再完成第 2题,第二题要求学生要写出计算过程。 )2、练习八第 2 题的后 4 个小题。(在学生完成此题时,教师指导好思维慢的学生先算出乘法算式的积,
10、再找出两题之间的关系)四、全课小结:1、今天我们共同研究了什么知识?2、你能用一句完整的话来说一说今天的主要内容吗?3、你认为在完成课后作业时,应该从哪些方面尽量避免错误的产生?五、作业练习:练习八第 3、4 题。 (第 3 题在学生做完题后,引导学生将题中的 4/5 改成小数,用小数除法加以验证。 )反思电子教案编写者 执教 时间 年 月 日教学内容 分数除法练习教学目标 1 在理解分数除法算理的基础上,正确熟练地进行分数除法的计算;2 运用所学的分数除法的知识,解决相应的实际问题.教学重难点 修改意见教学过程一、基础知识练习:1、计算: 2/132 8/94 3/103 5/115 22/
11、232 3/102 23/2426 17/2151 8/97 13/154 (学生独立计算,教师巡视指导 ,订正时让学生说一说是怎样计算的.)2、通过计算下面的题,请你想一想,除数是整数和除数是分数的除法在计算上有什么相同的地方? 引导学生小结:除以一个不等于 0 的数,等于 H 这个数的倒数.二 深入练习、计算下面各题,比较它们的计算方法.5/6+2/3 5/6 2/3 5/62/3 5/62/3、(让学生计算后分组讨论:你发现了什么规律?请你把你发现的规律完整地讲给大家听听。)根据学生的回答,教师作如下板书:一个数除以小于 1 的数,商大于被除数;一个数除以 1,商等于被除数;一个数除以大
12、于 1 的数,商小于被除数。三、解决问题:练习八第 7 至 8 题。第 7 题学生独立解答。第 8 题学生解答时提示学生需要先统一单位。小结三道题的共同特点:都是求一个量里包含多少个另一个量,都用除法计算。四、作业练习:1、33 页第 5、9 题。2、 一个商店用塑料袋包装 120 千克水果糖.如果每袋装 1/4 千克,这些水果糖可以装多少袋? 反思电子教案编写者 执教 时间 年 月 日教学内容例 4,练习九第 1-4 题教学目标1、正确解答两三步计算的分数四则混合式题。2、运用学过的知识,解答两步计算的较简单的分数应用题。教学重难点1、两三步式题的正确计算。2、培养和训练学生运用所学知识解决
13、问题的能力。 修改意见教学过程一:复习铺垫1、填空:除以一个不等于 0 的数,等于( ) 。2、口算:3/53 3/72 2/51/5 1/42/3 1/23 33/5 1/3+1/2 61/3 3、标明下面各题的运算顺序:7202+50(25+47) 117812(84+5) 54、小红用 8 米长的彩带做一些花,如果每朵花用 2/3 米彩带,小红能做多少朵花?二、引入新课:在上面第三个问题的后面增加“她把其中的 4 朵送给了同学,还剩多少朵花?” (增加问题后就成为例 4)1、学生读题,理解题意。2、说一说,怎样求还剩多少朵花?3、学生列式:4、师:请同学们观察,这道题目中有哪几种运算?生
14、:除法和减法。师:在整数四则混合运算中,运算顺序是怎样的?生:略。师:从以上分析请你推想:整数四则混合运算的运算顺序,适用于分数吗?生:通过分析例 4 的题意我们可以看出整数四则混合运算的运算方法,同样适用于分数和计算。5、学生独立计算,师巡视指导并作订正。82/3-4=83/2-4=12-4=8(朵)答:小红还剩 8 朵花。6、思考:在计算中,应该注意什么?三、要求:让学生说一说,上面的题目的运算顺序各是什么,然后进行计算。本练习的教学安排:学生先独立计算前两列的四个小题,然后交流各自的算法,对比分步计算的先把除法转化为乘法再一次性约分这两种不同的解法,哪一种更简便些?鼓励学生以后在计算中可
15、以根据题目的特点灵活选用恰当的方法进行计算;然后再让学生计算第三列的两个小题,此两小题由学生找出运算顺序之后独立计算,教师指导有困难的学生。最后让学生说一说,你在计算中是如何来提高计算的正确率的?学生读题,理解题意。提问:1、老爷爷每天跑几圈?2、半圈用哪个数来表示?3、照这个速度,怎样理解?4、要求老爷爷每天跑步要用多少时间,要先求出什么?5、现在你能解答了吗,能解答的自己写出解答过程,不能解答的请教老师。6、指名口答解答过程,师生共同订正。四、全课总结:1、说一说,今天学习了什么新知识?2、这节课,你有什么收获吗?有什么发现吗?有什么想要告诉老师和同学的吗?请大家发表自己的见解。五、课后作
16、业:练习九第 1-4 题。第 1 题:读题后思考,你打算怎样来计算这几道题?(多找几个学生来说自己心里的想法,寻找出最好的解题策略后再让学生进行计算。 )第 2 题:提问 6 楼到地面的高度是多少层楼的高度?(6 楼楼板到地面的高度实际只有 5 层楼的高度)第 3、4 题由学生独立完成。反思电子教案编写者 执教 时间 年 月 日教学内容 分数除法的计算及相应问题解答教学目标1、进一步掌握分数除法的计算方法,能够正确迅速地计算两、三步计算的分数四则运算式题,提高分数四则运算的能力。2、体会数学与生活的联系,提高学生综合运用知识解决问题的能力,能运用分数的知识解决一些实际问题。教学重难点 修改意见
17、教学过程一、基本练习:1、判断正误:、3/55=5/35( )、4 分米的 1/5 等于 5 分米的 1/4。 ( )、两数相除,商一定大于被除数。 ( )2、学生计算后订正时,着重评讲第 5 小题至第 7 小题的解法,第5、6 小题让学生说一说写出计算过程前是怎样想的,即 0.375 和0.6 是怎样处理的?第 7 小题可以分步计算也可以运用乘法分配律进行计算。3、订正时让学生说明解题依据。第四小题目可以在等号两边先乘以 4再乘 2/3,也可以一次同乘 4 与 2/3 的积。二、深入练习:1、选择正确答案的序号填在括号里:、一根绳子剪去 3 米正好是 1/3,这根绳子原来的长度是多少米?(
18、)A 1 B 9 C 3、与 124/5 相等的式子是 :( )、 、 、.2、(此题中的 60 瓦是没有用的条件,可能会影响少数学生的正确列式,这里在学生审题之后指名分析已知条件和问题的关系,让学生明白列式中不需要这个条件。 )、(让学生先计算,再比较你有什么发现?引导学生弄清楚:其原因是 2/3、3/4 的倒数与 1/2 的积正好是 1。也就是除以 2/3、3/4再乘上 1/2,实际效果相当于除以或乘上 1。 )三、自主练习:1、2、四、思维训练:1、一根绳子每次剪去它的 1/2,一共剪了 4 次,最后下这根绳子的几分之几?、用汽车运一堆货物,每天运这堆货物的四分之一,几天可以运完?每天运
19、这堆货物的七分之二,几天可以运完?反思电子教案编写者 执教 时间 年 月 日教学内容 解决问题,已知一个数的几分之几是多少求这个数的应用题教学目标知识目标:使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。能力目标:情感目标:培养学生良好的学习习惯教学重难点 弄清单位“1”的量,会分析题中的数量关系。分数除法应用题的特点及解题思路和解题方法。 修改意见教学过程1、出示复习题:根据测定,成人体内的水分约占体重的 ,而儿童体内的水分约占23体重的 ,六年级学生小明的体重为 35 千克,他体内的水分有多少45千克?2、让学生观察题目,看看题目中所
20、给的三个条件是否都用得上,并说说为什么。3、选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。小明的体重 体内水分的重量454、指名口头列式计算。二、新授1、教学例 1 的第一个问题:小明的体重是多少千克?(1)读题、理解题意,并画出线段图来表示题意:(2)引导学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。 小明的体重 体内水分的重量45(3)这道题与复习题相比有什么相同点和不同点?(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)(4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为
21、 ,列方程来解决问题)(5)启发学生应用算术解来解答应用题。 (根据数量关系式:小明的体重4/5 体内水分的重量,反过来,体内水分的重量 小45明的体重)2、解决第二个问题:小明的体重是爸爸的 ,爸爸的体重是多少715千克?(1)启发学生找到分率句,确定单位“1”。(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。 (出示线段图)爸爸:小明: 爸爸的体重 小明的体重715方程解:解:设爸爸的体重是 千克。357153571575算术解: 35 75(千克)7153、巩固练习:P38“做一做”(学生先独立审题完成,
22、然后全班再一起分析题意、评讲)三、练习1、练习十第 13 题。 (先分析数量关系式,然后确定单位“1”,最后再进行解答。第二题注意引导学生发现 250ml 的鲜牛奶是多余条件)2、练习十第 6 题(引导学生先求出单位“1”爸爸妈妈两人的工资和 15001000,再根据数量关系式进行计算)四、总结这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果分率句中的单位“1”是未知的话,可以用方程或除法进行解答。反思六年级数学电子教案编写者 执教 时间 年 月 日教学内容 练习课:两步计算解决问题(课本第 40 页练习十第 59 题)教学目标 1、使学生能用除法计
23、算熟练解决“已知一个数的几分之几是多少,求这个数”的问题。2、能综合运用所学知识解决有关的实际问题。教学重难点 修改意见教学过程一、基础练习完成课本练习十第 5 题。过程要求:(1)学生独立计算,教师巡视,发现问题及时纠正;(2)选取几道计算题,让学生上台演板。(3)集体评价。(4)小结分数四则混合运算的计算方法。二、专项练习1、只列式不计算。(1)男生 30 人,是女生人数的 2 倍,女生有多少人?(2)男生 30 人,是女生人数的 1.5 倍,女生有多少人?(3)男生 30 人,是女生人数的 ,女生有多少人?12(4)男生 30 人,是女生人数的 ,女生有多少人?23过程要求:依次出示题目
24、,学生根据题意列出除法算式;说一说有什么体会。通过交流,使学生明白这类问题的特征和解答方法。教师结合板书帮助分析。一个数 =具体量 几几单位“1”的量 =具体量几几 单位“1”的量=具体量几几2、即时练习。学校田径队有女队员 20 人,是男队员人数的 ,男队员有多少人?45过程要求:(1)学生尝试用除法解答。(2)引导提问: 把什么看作单位“1”?45如何求单位“1”的量?具体量是多少,占单位“1”的几分之几?怎样列式计算?三、巩固练习完成课本练习十第 69 题。1、第 6 题: 把什么看作单位“1”?35求每月开支多少元,就是求什么?列式计算。2、第 7 题: 把什么看作单位“1”?45单位
25、“1”的量已知吗?用什么方法解答?求出的单位“1”是什么时候的产量?求全年产量应该怎么办?3、第 8 题: 说一说题中的数量关系?你用什么方法解答,怎样解答比较简单?4、第 9 题: 认真审题,弄清题意;这里的 、 都是以什么数看1613 12作单位“1”?说一说你的解答思路。再计算,把结果填在表上。四、作业选用课时作业。反思六年级数学电子教案第三单元 “分数除法” 第 8 课时编写者 执教 时间 年 月 日教学内容 稍复杂的分数除法应用题教学目标知识目标:通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解
26、题思路和方法,能比较熟练地解答一些简单的实际问题。情感目标:培养学生良好的学习习惯。教学重难点 弄清单位“1”的量,会分析题中的数量关系,分析题中的数量关系。 修改意见教学过程一、复习小红家买来一袋大米,重 40 千克,吃了 ,还剩多少千克?581、指定一学生口述题目的条件和问题,其他学生画出线段图。2、学生独立解答。3、集体订正。提问学生说一说两种方法解题的过程。4、小结:解答分数应用题的关键是找准单位“1”,如果单位 “1”的具体数量是已知的,要求单位“1”的几分之几是多少, 就可以根据分数乘法的意义,直接用乘法计算。二、新授1、教学补充例题:小红家买来一袋大米,吃了 ,还剩 15 千克。
27、58买来大米多少千克?(1)吃了 是什么意思?应该把哪个数量看作单位“1”?58(2)引导学生理解题意,画出线段图。(3)引导学生根据线段图,分析数量关系式:买来大米的重量吃了的重量=剩下的重量(4)指名列出方程。解:设买来大米 X 千克。x x=15582、教学例 2(1)出示例题,理解题意。(2)比航模组多 是什么意思?引导学生说出:是把航模组的人数14看作单位“1”,美术组少的人数占航模组的 (2)学生试画出线段图。(3)根据线段图,结合题中的分率句,列出数量关系式:航模组人数美术组比航模组多的人数美术组人数(4)根据等量关系式解答问题。 解:设航模小组有 人。 2514(1 )2514
28、255420三、小结1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。 )2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)四、练习练习十第 4、12、14 题。反思六年级数学电子教案第三单元 “分数除法” 第 9 课时编写者 执教 时间 年 月 日教学内容 比和比的应用 比的意义教学目标知识目标:使学生理解比的意义,掌握比的各部分名称,能正确地读、写比,并会正确地求比值。能力目标:引导学生加强知识之间的联系,使学生掌
29、握的知识系统化,提高学生分析解决问题的能力。情感目标:培养学生良好的学习习惯。教学重难点 比与除法、分数的关系,理解比的意义 修改意见教学过程一、复习。1某车间有男工人 5 人,女工人 8 人,男工人数是女工人数的几分之几?女工人数是男工人数的几倍?2分数与除法有什么关系?二、新授。1 教学比的意义。(1)教学同类量的比。A、2003 年 10 月 15 日,我国第一艘载人飞船 “神舟”五号顺利升空。在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。杨利伟展示的两面旗都是长15cm,宽 10cm,怎样用算式表示它们的长和宽的关系?(引导学生说出:可以求长是宽
30、的几倍? 或求红旗的宽是长的几分之几?)B、这两个关系都是用什么方法来求的?(除法)C、比较这两个数量之间的关系,除了除法,还有一种表示方法,即“比”。可以说成是:长和宽的比是 15 比 10,或宽和长的比是 10比 15。D、不论是长和宽的比还是宽和长的比,都是两个长度的比,相比的两个量是同类的量。(2)教学不同类量的比。A、 “神舟”五号进入运行轨道后,在距地 350km 的高空作圆周运动,平均 90 分钟绕地球一周,大约运行 42252km。怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米?(路程时间速度,算式:4225290)B、对于这种关系,我们也可以说:飞船所行路程和时间的比是4
31、2252 比 90,这里的 42252 千米与 90 小时是两个不同类的量。(3)归纳比的意义。A、通过上面两个例子,你认为什么是比?(学生试说,教师总结:两个数相除,又叫做两个数的比。 )B、练习:判断,下面数量间的关系是表示两个数的比吗?甲数是 9,乙数是 7,甲数和乙数的比是 9 比 7;乙数和甲数的比是 7 比 9。 拖拉机 45 分耕了 2 公顷地,工作总量和工作时间的比是 2 比45。 足球比赛,甲队和乙队的比分是 3 比 2。2教学比的写法、比的各部分名称。比的写法。15 比 10 记作 1510 10 比 15 记作 101542252 比 90 记作 42252 90比的各部
32、分名称。A、学生自学课本,小组讨论概括知识点。B、小组汇报并举例:“:”是比号,读作“ 比”。比号前面的数,叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。例如:3 2=32=3/2 前项比号后项 比值3教学比与除法、分数的关系。(1)比与除法的关系A、观察上面的式子,比的前项相当于什么?(被除数) ,后项相当于什么?(除数)比值相当于什么?(商) 。B、比的后项能不能是零?为什么?(比的后项不能是零。因为比的后项相当于除数,除数不能是 0,所以比的 后项也不能是 0)C、比值通常用分数表示,也可以用小数或整数表示。(2)比与分数的关系。A、根据分数与除法的关系,可
33、以推知比与分数有什么关系?(引导学生回答:比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。 )a) 两个数的比也可以写成分数的形式。例如 1510,可写成 ,读作 15 比 10。结合上面的讲解,板书下表:除法: 被除数 (除号) 除数 商分数: 分子 (分数线) 分母 分数值比: 前项 (比号) 后项 比值三、巩固练习。1完成课本“做一做” 。2练习十一第 1、2 题。四、布置作业。1课本练习十一的第 3 题。2补充:求出比值。0.3750.875 0.25 0.75 2.63.9反思六年级数学电子教案第三单元 “分数除法” 第 10 课时编写者 执教 时间 年 月 日教学内容
34、比的基本性质教学目标知识目标:通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。能力目标: 通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。教学重难点 理解比的基本性质,掌握化简比的方法,化简比与求比值 0 的不同 修改意见教学过程一、复习。1、什么叫做比?比的各部分名称是什么?2、比与除法和分数有什么关系?比 前项 :(比号) 后项 比值除法 被除数 (除号) 除数 商分数 分子 (分数线) 分母 分数值3、除法中的商不变规律是什么?举例:68(62)(82)12164、分数的基本性质是什么?举例: 二、新授1、猜测比的性
35、质:除法有“商不变性质”,分数也有“ 分数的基本性质”,根据比与除法和分数的关系,同学们猜想看看,比也有这样的一条性质吗?如果有,这条性质的内容是什么?(学生猜测,并相互补充,把这条性质说完整)2、验证猜测的性质能否成立:学生以四人小组为单位,讨论研究。68=(62) (82)=12166:8=(62)(82 )=12:166:8=(62)(82)=3 :468=(62)(82)=341、小组派代表说明验证过程,其他同学补充说明。2、正式得出“比的基本性质”:比的前项和后项同时乘或除以相同的数(0 除外) ,比值不变,这叫做比的基本性质。3、教学例 1(1)出示例题:把下面各比化成最简单的整数
36、比1510 0.752(2)引导学生审题,说说题目提出了几个要求(两个,一是化成整数比,二必须是最简的)(3)指名学生说出自己化简的方法,全班评判。三、练习1、P46“做一做”2、练习十一第 2 题(提醒学生第二个长方形,长的那条为“长”,短的那条为“宽” )四、总结今天我们学习了什么知识?比的基本性质可以应用在哪些方面?反思六年级数学电子教案第三单元 “分数除法” 第 11 课时编写者 执教 时间 年 月 日教学内容 比的应用教学目标知识目标:结合生活实例,使学生进一步掌握按比例分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。能力目标:培养学生运用知识进行
37、分析、推理等思维能力,以及探求解决问题途径的能力。教学重难点 进一步掌握按比例分配应用题的结构特点和解题思路正确分析解答比例分配应用题。 修改意见教学过程一、复习。1、我们在教学中学过平均分,平均分的结果有什么特点(每份都相等)在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常叫按比例分配。、一瓶 500ml 的稀释液,其中浓缩液和水的体积分别是 100ml 和400ml,_?(补充问题并解答)二、新授。1、教学例 2。(1)出示例 2:(2)引导学生弄清题意后,问:题目中要分配什么?是按什么进行分配的?(分配 500ml 的稀释
38、液;浓缩液和水的体积按 14 进行分配。 )(3)问:“浓缩液和水的体积 14”,是什么意思?(就是说在500ml 的稀释液,浓缩液占 1 份,水的体积占 1 份,一共是 5 份,浓缩液占稀释液的 5 分之 4,水的体积占稀释液的 5 分之 1。 )(4)你能求出两种各多少 ml 吗?怎样求?(引导学生进行解题) 稀释液平均分成的份数:1+4=5 浓缩液的体积:500 1/5 =100(ml) 水的体积: 500 4/5 =400(ml)答:稀释液 100ml,水 400ml。(5)如何检验解答是否正确呢?(说明:检验的方法有两种:一是把求得的浓缩液和水的体积相加,看是不是等于稀释液的总体积;
39、二是把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于14(6)学生试做:练习:做一做第 1 题。(订正时说说解题时先求什么?再求什么?)2、补充练习(1)出示:学校把栽 280 棵树的任务,按照六年级三个班的人数分配给各班。一班有 47 人,二班有 45 人,三班有 48 人。三个班各应栽树多少棵?(2)引导学生弄清题意后,问:题中要把 280 棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按 474548 来分配。 )(3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的几分之几?(使学生明确:要先算三个班总共有多少人(即总份数) ,然后才能
40、算出各班栽的棵数占总棵数的几分之几。 )(4)怎样分别算出各班应种的棵数?引导学生解答: 三个班的总人数:47+45+48=140(人) 一班应栽的棵数: 280 = 94(人) 二班应栽的棵数: 280 = 90(人) 三班应栽的棵数: 280 = 96(人)答:一班栽树 94 棵,二班栽树 90 棵,三班栽树 96 棵。(5)学生进行检验。(6)学生试做“做一做” 中的第 2 题。三、巩固练习。练习十二的第 1、3 题。四、布置作业。练习十二第 2、4、5、6、7 题。反思六年级数学电子教案第三单元 “分数除法” 第 12 课时编写者 执教 时间 年 月 日教学内容 比的应用的综合练习(课
41、本第 51 页的第 57 题,第 48 页的第 7 题)。教学目标 使学生进一步理解掌握按一定的比进行分配的问题结构特征及数量关系,解决有关的问题。教学重难点 修改意见教学过程一、基础练习1、填一填。(1) 某班男生人数与女生人数的比是 43,男生人数占全班人数的( )/( ) ,女生人数占全班人数的( )/( ) 。(2)修筑一段公路,已修的部分占全长的 3/5,未修的部分占全长的( )/( ) ,未修的部分与已修部分的最简单整数比是( )/ ( ) 。2、一本书,已看的部分与未看的部分的比是 32。(1)根据题意,你能得到哪些数量关系?学生思考后回答,教师记录。已看的部分占未看的 3/2;
42、未看的部分占已看的 2/3;已看的部分占全书的 3/5;未看的部分占全书的 2/5。(2)解决问题。如果已看了 60 页,未看的有多少页? 602/3如果未看的是 40 页,全书有多少页? 402/5你还能提出哪些问题?怎样解答?让学生与同伴互相提问,解答,然后汇报。二、深化练习1、例题:一个长方形的周长是 84dm,长与宽的比是 43,这个长方形的长和宽各是多少 dm?(1) 认真审题,弄清题意。(2)说一说你的解答思路。长与宽的和:84/2=424+3=7长:424/7=24dm宽:423/7=18dm2、完成课本第 5、6 题。第 5 题:(1)认真审题,弄清题意,(2)说一说解答思路:
43、先求出长、宽、高的和,再分别求出长、宽、高各是多少。(3)怎样求长、宽、高的和?(4)为什么要 1204?(5)学生列式解答,指名演板。第 6 题:(1)认真审题,说一说题目的意思,(2)要怎么解决?(3)学生列式计算。3、思考题。第 51 页第 7 题。(1)认真审题,弄清题意,说一说题中的数量关系的特征。(2)要怎样解决?(3)列式计算(4)还有其它方法吗?第 48 页第 7 题。说一说根据两数的比是 23,能得到哪些数量关系?三、作业选用课时作业。反思六年级数学电子教案第三单元 “分数除法” 第 13 课时编写者 执教 时间 年 月 日教学内容 整理复习(1)教学目标 使学生进一步掌握本
44、章所学的基本概念和计算法则,提高学生的计算能力和解题能力。教学重难点 分数除法的计算方法,化简比。正确计算分数除法。 修改意见教学过程一、复习分数除法的意义和计算法则1、这一章我们学习了分数除法的有关知识请大家回忆一下分数除法有几种类型? (1)分数除以整数,例如 5/7 5;(2)一个数除以分数,它又包括整数除以分数,例如 204/5 ;和分数除以分数,例如 2/3 6/7 。(3)做第 52 页“整理和复习”的第 2 题。2、分数除法的意义(1)第 52 页“整理和复习” 的第 1 题:要把这道乘法算式改写成两道除法算式,应该怎么办呢?(引导学生根据乘、除法的关系进行改写,然后让学生将改写
45、的算式填写在书上)(2)让学生说说是怎样题改写成两道分数除法算式的。(3)分数除法的意义是什么呢?(使学生明确,分数除法的意义与整数除法的意义相同,都是:已知两个因数的积与其中一个因数,求另一个因数的运算)3、分数除法的计算法则(1)分数除以整数应该怎样计算?一个数除以分数应该怎样计算?(2)引导学生概括出分数除法的统一计算法则:除以一个数(0 除外) ,等于乘这个数的倒数。(3)完成 P52“整理和复习”第 2 题。(4)P53 练习十三第 2 题。二、复习比的意义和基本性质1、比的意义(1) 什么叫做比?(两个数相除又叫做两个数的比)什么叫做比值?(比的前项除以后项所得的商 )(2) 以“
46、32”为例,让学生分别说出“ 比号”“前项”和“后项”。32 1.5 前 比 后 比项 号 项 值 (3)比和比值有什么区别和联系呢?(比值是一个数,是比的前项除以比的后项所得的商,它通常用分数表示,也可以用小数表示,有时还是整数。而比所表示的是两个数的关系,如 32,虽然也可以写成分数的形式 ,但仍读作 3 比2。特别强调比的后项不能为 0)(4)比和除法、分数的联系除法 被除数 (除号) 除数 商分数 分子 (分数线) 分母 分数值比 前项 (比号) 后项 比值2、比的基本性质(1)复习概念及化简方法比的基本性质是什么?应用比的基本性质,怎样对整数比进行化简?不是整数的比应该怎样化简?(2
47、)学生做 P52“整理和复习”第 3 题(指名学生说说自己是怎样想的)三、课堂练习1、练习十三的第 1 题(先让学生独立完成订正时,要让学生说出判断正误的理由)2、做练习十四的第 2 题3、做练习十四的第 3 题(学生独立完成教师注意巡视,察看学生所用算法是否简便)4、做练习十四的第 7 题反思六年级数学电子教案第三单元 “分数除法” 第 14 课时编写者 执教 时间 年 月 日教学内容 整理复习(2)教学目标 使学生进一步掌握用方程或算术方法解答已知一个数的几分之几是多少求这个数的应用题和稍复杂的分数乘除法应用题,提高学生解答分数应用题的能力教学重难点 正确解答分数乘除法应用题,分数乘除法应用题的联系与区别 修改意见教学过程一、推理训练1、男生占全班人数的 3/5 ,女生占全班人数的( ) 。2、一堆煤,用去了 4/7 ,还剩下( ) 。3、今年比去年增产 1/8,今年相当于去年的( ) 。二、对比训练:1、一步分数应用题 张大爷养了 200 只鹅,500 只鸭,鹅的只数与鸭的只数的几分之几? 张大爷养了 200 只鹅,鹅的只数是鸭的只数的 2/5 ,养了多少只鹅? 张大爷养了 200 只鹅,鸭的只数是鹅的只数的 5/2 ,养了多少只鸭?(1)比较相同点和不同点引导学生进行比较,使学生更清楚地认识到,在结构上,这三道应用题都含有同样的数量关系,即:鹅的只数,鸭的只数, 鹅的只数