1、引 言,一、什么是高等数学 ?,初等数学, 研究对象为常量,以静止观点研究问题.,高等数学, 研究对象为变量,运动和辩证法进入了数学.,数学中的转折点是笛卡儿的变数.,有了变数 , 运动进入了数学,有了变数,辩证法进入了数学 ,有了变数 , 微分和积分也就立刻成 为必要的了,而它们也就立刻产生.,恩格斯,笛卡儿 目录 上页 下页 返回 结束,1. 分析基础: 函数 , 极限, 连续,2. 微积分学: 一元微积分,(上册),(下册),3. 向量代数与空间解析几何,4. 无穷级数,5. 常微分方程,主要内容,多元微积分,机动 目录 上页 下页 返回 结束,二、如何学习高等数学 ?,1. 认识高等数
2、学的重要性, 培养浓厚的学习兴趣.,2. 学数学最好的方式是做数学.,聪明在于学习 , 天才在于积累 .,学而优则用 , 学而优则创 .,由薄到厚 , 由厚到薄 .,马克思,恩格斯,要辨证而又唯物地了解自然 , 就必须熟悉数学.,一门科学, 只有当它成功地运用数学时, 才能达到真正完善的地步 .,第一节 目录 上页 下页 返回 结束,华罗庚,给出了几何问题的统一,笛卡儿 (15961650),法国哲学家, 数学家, 物理学家,他,是解析几何奠基人之一 .,1637年他发,表的几何学论文分析了几何学与,代数学的优缺点,进而提出了 “ 另外,一种包含这两门科学的优点而避免其缺点的方法”,从而提出了解析几何学的主要思想和方法,恩格斯把它称为数学中的转折点.,把几何问题化成代数问题 ,作图法,华罗庚(19101985),我国在国际上享有盛誉的数学家.,他在解析数论,自守函数论,高维数值积分等广泛的数学领域中,程,都作出了卓越的贡献 ,发表专著与学术论文近 300 篇.,偏微分方,多复变函数论,矩阵几何学,典型群,他对青年学生的成长非常关心,他提出治学之道是,“ 宽, 专, 漫 ”,即基础要宽,专业要专,要使自己的专业,知识漫到其它领域.,1984年来中国矿业大学视察时给,给师生题词: “ 学而优则用, 学而优则创 ”.,