1、2010-2011学年第二学期,第三章 信息搜寻理论,第一节 价格离散与离散率第二节 信息搜寻第三节 博弈论简介,2010-2011学年第二学期,第一节 价格离散与离散率,一、价格离散 (一)价格离散:同地区、同质商品的价格差异。,斯蒂格勒 (G.J.Stigler)1961年给出的典型事例 雪弗莱汽车(芝加哥,1959年2月) 无烟煤(华盛顿特区,1953年4月),2010-2011学年第二学期,例 三款手机在国美几个地区的价格(2003年9月16日),(二)价格离散的原因1.市场是变化和分散的,而非集中统一和稳定静止的,这是市场价格离散的首要原因。2.商品的异质性,或者说,产品质量的不确定
2、性导致市场价格的持续离散。3.市场经营过程中销售条件的差别,可以将某些同质商品市场价格的离散部分地归咎于这个方而的原因。4.市场价格离散程度会随着市场规模(贸易量和进入市场人数)的变化而变化。,2010-2011学年第二学期,(三)价格离散的意义 1. 产生了市场信息的不完备性,导致了市场代理 人之间的信息差别2.产生了有利可图的信息搜集行为3. 诱发了信息搜寻的动机并提供了信息搜集的可 能 价格离散幅度可作为市场发育状况的显示器离散幅度愈高,市场发育状况愈不成熟离散幅度愈低,市场发育状况愈成熟,2010-2011学年第二学期,二、价格离散率模型价格离散率是测度价格离散幅度的一种方式设某市场S
3、中有m家商店x,在某个既定时刻,它们对某种同质商品Q的开价分别是P1,P2,,P n (n m), 且P1 P2 P n 。 P1,P2,P n 分别对应有 x1,x2, ,x n组商店,所对应的商店数为t1,t2,,tn, t1+ t2+ t n=m,2010-2011学年第二学期,当 D = P n P 1时,D为市场价格离散幅度 当 时,P为既定时刻的平均市场价格 当 t1 ,t2,t n依次累加,每次累加的累加值 t n在坐标中有一个对应的P n值,将这些对应值点连接起来构成的曲线称为市场S中商品Q的价格离散曲线 F(Q),2010-2011学年第二学期,一种求解基本价格离散率的简便方
4、法、是应用最小二乘法直接求出各离散点的回归直线yax+b,该回归直线的斜率a即为价格离散率。这种方法求出的离散率虽然较不准确,但由于方法简单、直接,同时具有可比性和直观性,因而在实际应用中仍然受欢迎。,2010-2011学年第二学期,PF(Q)t市场价格离散曲线从价格离散率的规定中可以看出,当a越接近0时,市场价格的离散程度越低,即市场价格越收敛;当a超接近1时,市场价格的离散程度越高,即市场价格越分散。当Pl=P2=Pn时,Q的价格离散率为零。这时,价格离散曲线转化为一条平行于横坐标的直线。,2010-2011学年第二学期,现举例进一步说明该模型的应用 日本某相机机身价格离散分布,2010-
5、2011学年第二学期,D63560827(元)P 619.2(元)令z tn , yPn,则n7, z =48, y=4327, z2 492, zy 29771。将有关数据代入公式得:a06149,2010-2011学年第二学期,以上模型构成中可以看出,市场价格离散率主要受三种因素的制约。 一是经营商品的商店数量m,特别是经营商店的分类数目n;二是价格离散幅度D;三是价格在经营商店中离散的概率分布(P)。其中,最后一种因素最为主要。,2010-2011学年第二学期,价格离散率模型(例题)三款手机在国美几个地区的价格离散分布(2003年9月16日),2010-2011学年第二学期,由上表可知(
6、1) 三款手机的价格离散幅度分别为 D(1)= 3080 2740 = 340元,D(2)=1650 1466 = 184 元 ,D(3)= 950 - 880 = 70 元;(2)三款手机的平均价格分别为P(1)= 2912.67元,P(2)= 1496.67元,P(3)= 928.17 元;(3)令z = tn ,y = Pn , 作图如下,2010-2011学年第二学期,三款手机价格离散曲线,16,例2:Q市场A、B、C中价格的离散分布,2010-2011学年第二学期,17,市场A,B和C的价格离散幅度分别为:D(A)4元, D(B)6元, D(C)6元;平均价格分别为:(A)10.75
7、元, (B)10.75元,(C)11.2元。 令ztn ,yPn,据上表作图。经计算:Q在市场A,B和C中的价格离散率分别为 (A)0.5565, (B)0.458 (C) 0.2834。,2010-2011学年第二学期,18,Y,Z,0,价格离散曲线,F(A),F(B),F(C),2010-2011学年第二学期,我们得出三个基本结论: 第一,虽然经营的商店数量,价格的离散幅度构成市场价格离散率的主要影响因素,但是,起决定作用的仍然是价格在经营商店中离散的概率分布。例如,虽然市场A和B经营Q的商店分类数目一致(n4),但由于离散幅度,特别是价格在经营商店中离散概率分布的差别,使市场A和B具有不
8、同的价格离散率。 第二,价格离散幅度大的市场的价格离散率未必比价格离散幅度小的市场的价格离散率高。例如,D(B)D(A),但是,(B)(A)。 第三,市场价格离散率不受市场平均价格的影响。,2010-2011学年第二学期,第二节 信息搜寻,一、信息搜寻原理 (一)常见的信息搜寻方式1.交易区域化是最为古老的搜寻方式之一。2.专业贸易商的出现是对搜寻方式的一个发展。3.广告。4.信息资源共享。5.直接走访。6.专业或非专业化信息机构或个体。7.通讯搜寻。,2010-2011学年第二学期,一.信息搜寻原理斯蒂格勒(G.J.Stigler)信息搜寻成本 = 时间 + “鞋底”(shoe)即交通成本和
9、其他查寻费用,价格离散,搜集和经营信息成为必要,2010-2011学年第二学期,两种搜寻原则最多搜寻 n个商店,并且一旦遇到最低价格后停止搜寻搜寻n 个商店,并且从获得的n个价格中选择最低价格,信息搜寻,2010-2011学年第二学期,(二)搜寻成本与搜寻对策a. 单方搜寻边际成本不变价格离散率收益曲线MR MR搜寻数量S1 S2搜寻效益U2 U1,2010-2011学年第二学期,(2)搜寻成本与搜寻对策a. 单方搜寻UMR 价格离散率固定MC 搜寻边际成本下降MC MC MCU1 搜寻次数增加U2 S1 S2S1 S2 S 搜寻效益减少,2010-2011学年第二学期,(2)搜寻成本与搜寻对
10、策b. 双方搜寻 例 姑娘与小伙的搜寻 假设美丽姑娘与英俊小伙的搜寻边际成本均为2,相貌普通的姑娘与小伙的搜寻边际成本为1;相貌美丽或英俊的收益为2,相貌普通的收益为1。,2010-2011学年第二学期,26,二、搜寻模型,设某市场M中有一商品Q的正常单价为p,且M中部分商店对每件商品都给予d的折扣。假设不给予折扣的商店比例为q(q1),那么,给予折扣的商店比例则为(1q)。现以增减函数u(c)表示,买主走访商店的成本为c。这样,买主每次搜寻都承担u(c)0的负效用。,2010-2011学年第二学期,买主走访商店可能出现3种结果。 首先,买主没有做出购买行动,在这种情况下,买主将承担u(c)的
11、负效用; 其次,买主可能无折扣地按价格p购买商品,此时的总体效用为u(c)+u(p), 这里,由于得益于拥有商品的效用,故u(p)0; 最后,买主购买到含有折扣d的商品,这时,买主获得的总体效用为u(c)+u(p+d),显然,u(p) u(p+d)。,2010-2011学年第二学期,28,接下来,我们给予买主二择一的选择:或者无论是否有折扣,买主只走访一家商店并购买商品,或者走访一家商店只有在有折扣时才购买商品,否则,走访第二家商店,并且不论第二家商店是否有折扣都买下商品。这样,买主从第一种选择中得到的预期效用U1,必然是走访商店的负效用加上购买商品获得的预期效用,即Ulu(c)+qu(p)+
12、(1q)u(pd),2010-2011学年第二学期,29,买主从第二种选择中得到的预期效用U2是买主走访第一家商店的负效用,加上购买含有折扣商品带来的预期效用。如果在第一家商店得不到概率为q的折扣,买主将走访第二家商店,这时,买主将再次承受负效用,但是,这次无疑将采取购买行动,其预期效用为qu(p)+(1q)u(p+d)故U2为U2u(c)+(1q)u(p+d)+qu(c)+qu(p)+(1q)u(p+d),2010-2011学年第二学期,当P, d和q赋予一定数值,那么买主采取何种行动取决于搜寻成本的大小。首先,我们考虑U1=U2的情况,这里有: (1q)u(p) u(c)+(1q)u(p+
13、d) 令上式中C=C0 若(1q)u(p) u(c)+(1q)u(p+d) (1) 那么U1U2,即不搜寻。 若(1q)u(p) u(c)+(1q)u(p+d) (2) 那么U1U2,即搜寻。,2010-2011学年第二学期,31,由于U1式不同于U2式,P, d和q都已知时,(1)式右边值的下降意味着c的变化,也即u(c)负效用更高。因此,当UlU2时,cc0。由(2)式可知,当UlU2时,cco。U1,U2与c的关系可用下图表示。通过对U1和U2式的计算可知,对于c的任意值,U2的曲线都要比U1陡。如果U1U2,即搜寻成本c相对地低,很明显,搜寻是受欢迎的。相反,当U1U2,即搜寻成本相对
14、地高时,买主更乐意在第一家商店买下商品。,2010-2011学年第二学期,32,U1,U,C,0,U2,C0,2010-2011学年第二学期,33,以上搜寻模型对买主的搜寻次数做了规定(最多两次)。如果不限制搜寻次数,只考虑每次搜寻的收益,情况会怎么样呢?设市场M中有m家商店,其中, m/2家商店对商品Q给予折扣d,开价为P112元,m/2家商店维持原价为声p213元。我们看到,随着买主搜寻次数的增加,直至m次搜寻,搜寻的最低预期价格在不断地下降,直至最低价格12元。,34,按搜寻次数不同所假设的最低价格分布,2010-2011学年第二学期,35,由上表可知,搜寻两次比只做一次搜寻将节省0.2
15、5元,而搜寻3次则可以节省0.375元。可以预想,如果市场价格离散幅度更高的话,搜寻3次比只作一次搜寻的收益将更大。 很明显,从买主角度来看,每次搜寻的节省顿等于买主准备购买商品的数量q乘以作为搜寻结果的价格减少数额,再加上由于价格下降而增加的购买量的平均节省额。由于因价格下降而增加的购买量的平均节省数额较小,所以,在一般计算中对该项数值省略不计。这样,搜寻的节省额可以近似地表示为:,2010-2011学年第二学期,36,上式说明两点,第一,价格离散程度愈高,每次搜寻所获节省额就愈大,有效搜寻次数也就愈多。让我们再回到前面的搜寻模型中。如果商店增加给予买主的折扣,这对于买主的二中择一选择会产生
16、什么影响呢?明确这一点极为有趣。当增加d值时,对于每个c都有U1和U2的增加。但是,d的增加对于U2的影响比U1更大些。这些变化的结果将使co增大。这说明,当商店给予的折扣增加(即价格离散幅度扩大)时,买主的搜寻收益也将有所增加,并且,买主停止搜寻做出有利选择时的边际搜寻成本同时也提高了。,2010-2011学年第二学期,37,第二,购买的商品价格越高,或购买商品的数量越多,就越值得进行搜寻。因为买主用于商品的开支越高,由搜寻所得的节省额也就相应地增大,从而又刺激搜寻欲望而使搜寻次数增加。当然,如果考虑到搜寻成本所带来的负效用,搜寻不可能无限地进行下去 。另外通过本例可以看出:搜寻3次就可以获
17、得大部分搜寻收益。,2010-2011学年第二学期,三、信息搜寻的次数最佳搜寻次数由搜寻成本和搜寻的预期收益之间的相互关系来确定,即最佳搜寻次数就是搜寻的边际成本等于预期的边际收益时的搜寻次数,如图 .,CC 搜寻成本曲线 DD 搜寻收益曲线 n 最佳搜寻次数,S,2010-2011学年第二学期,39,当Nn时,搜寻都是经济的,我们称Nn时的搜寻为经济搜寻; 当Nn,搜寻都是不经济的,我们称Nn时的搜寻为非经济搜寻。 以上是对最佳搜寻次数的理论界定。,2010-2011学年第二学期,40,将以上的理论模型演化成可以被实际管理应用的工具,仍然存在不少困难。首先,虽然最佳搜寻次数的确定只与搜寻成本
18、和预期边际收益相关,但是,如何准确地确定搜寻成本和预期边际收益却使经济学家大伤脑筋,因为这涉及到价格离散幅度、搜寻范围、购买数量、购买商品种类等多种相关因素。 其次,以上提出的有关最佳搜寻次数模式是建立在一次性购买(如房地产购买)的条件基础上,如果购买行动反复进行,基于搜寻的购买量应当被加以考虑。再次,其他如市场继起价格正相关等因素也应列入考虑范畴。,2010-2011学年第二学期,第三节 博弈论简介( ),博弈论又称对策论,是研究决策主体行为发生直接相互作用时的决策以及这种决策的均衡问题 博弈论为信息经济学提供了有利的研究工具,博弈论成为主流经济学的一部分,正是伴随经济学对信息问题的处理而来
19、的。 张维迎认为信息经济学是博弈论应用的一部分,或者说,信息经济学是非对称信息博弈论。 博弈的目的是使用博弈规则预测均衡。,2010-2011学年第二学期,囚徒困境的例子,A. W. Tucker的囚犯困境(Prisoners Dilemma):,囚徒A,坦白,抵赖,坦白,抵赖,囚徒B,2010-2011学年第二学期,囚徒困境说明了什么,在(坦白、坦白)这个组合中,和都不能通过单方面的改变行动增加自己的收益,于是谁也没有动力游离这个组合,因此这个组合是纳什均衡,也叫非合作均衡。 囚徒困境反映了个人理性和集体理性的矛盾。如果和都选择抵赖,各判刑年,显然比都选择坦白各判刑年好得多。当然,和可以在被
20、警察抓到之前订立一个“攻守同盟“,但是这可能不会有用,因为它不构成纳什均衡,没有人有积极性遵守这个协定,显然最好的策略是双方都抵赖.,2010-2011学年第二学期,囚徒困境的意义,“囚徒的两难选择”有着广泛而深刻的意义。个人理性与集体理性的冲突,各人追求利己行为而导致的最终结局是一个“纳什均衡”,也是对所有人都不利的结局。他们两人都是在坦白与抵赖策略上首先想到自己,这样他们必然要服长的刑期。只有当他们都首先替对方着想时,或者相互合谋(串供)时,才可以得到最短时间的监禁的结果。,2010-2011学年第二学期,对经典经济学的冲击,“纳什均衡”首先对亚当斯密的“看不见的手”的原理提出挑战。按照斯
21、密的理论,在市场经济中,每一个人都从利己的目的出发,而最终全社会达到利他的效果。 国富论:“通过追求(个人的)自身利益,他常常会比其实际上想做的那样更有效地促进社会利益。” 从“纳什均衡”我们引出了“看不见的手”的原理的一个悖论:从利己目的出发,结果损人不利己,既不利己也不利他。两个囚徒的命运就是如此。从这个意义上说,“纳什均衡”提出的悖论实际上动摇了西方经济学的基石。,2010-2011学年第二学期,一、博弈论的要素,(一)参与人 players 参与人(players) 指的是一个博弈中度决策主体,决策人的目的是通过选择行动以最大化自己的支付(效用)水平。 参与人可以是自然人,也可以使团体
22、,如企业、国家、大集团。 每个参与人必须有可供选择的行动和一个很好定义的偏好函数 “自然” 作为虚拟参与人是一个外生随机变量。用N表示。,2010-2011学年第二学期,(二)行动 actions or moves,参与人在博弈的某个时点的决策变量。用 表示第i个参与人的一个特定行动。如(坦白) N个参与人的行动的有序集称为行动组合,行动的有序集为 ,在前面的例题中,行动组合用 表示 ,即(坦白,抵赖)。,2010-2011学年第二学期,行动的顺序,对于博弈的结果非常重要。有关静态和动态博弈的区分就是基于行动的顺序做出的。 同样的行动集合,行动的顺序不同,每个参与人的最有决策就不同,博弈的结果
23、也不同。尤其在不完全信息博弈中,后行动者依赖观察先行动者的行动来获取信息。,2010-2011学年第二学期,(三)信息 information,参与人有关博弈的知识,特别是有关自然的选择,其他参与人的特征和行动的知识。 完美信息perfect information:指一个参与人对其他参与人的行动选择有准确的理解,即每个信息集只包含一个值。,2010-2011学年第二学期,完全信息(complete information)是指自然不首先行动或自然的初始行动被所有参与人准确观察到的情况,即没有事前的不确定性。不完全信息意味着不完美信息(自然的选择不可观测),但逆定理不成立。,2010-2011
24、学年第二学期,(四)战略strategies,参与人在给定信息集的情况下的行动规则,它规定参与人在什么时候选择什么行动。用 表示。称为一个战略组合, 是第i个参与人选择的战略。,2010-2011学年第二学期,战略与行动:战略是行动的规则而不是行动本身。比如,“人不犯我,我不犯人;人若凡我,我必犯人”是一种战略,而“犯”与“不犯”是两种行动。 在静态博弈中,战略和行动是相同的。 战略必须是完备的,要给出参与人在每一种可想象得到的情况下的行动选择。,2010-2011学年第二学期,(五)支付payoff(效用utility),在一个特定的战略组合下参与人得到的确定效用水平,或是指参与人得到的期望
25、效用水平。用 表示第i个参与人的支付水平, 为n个人参与的支付组合。是所有参与人的战略选择的函数,2010-2011学年第二学期,(六)均衡equilibrium,指所有参与人的最优战略的组合。记为:是第i个参与人在均衡情况下的最优战略,2010-2011学年第二学期,(七)结果在博弈论中,均衡策略组合、均衡行动组合与均衡收益组合都可以称作结果。,2010-2011学年第二学期,二、博弈的分类,(一)零和博弈与非零和博弈 1.零和博弈(zero-sum game):指一方所得既是另一方所失,两者的得失之和为零。但零和博弈在大多数情况下对于经济与政治上的博弈是不适合的。2.非零和博弈(non-z
26、ero-sum game):指一方所得并非另一方所失,而且都获得了增量收益,其收益总和不再为零。经济与政治上的博弈主要是非零和博弈。,2010-2011学年第二学期,(二)合作博弈与非合作博弈,按照参与人之间是否合作进行分类,博弈可以划分为: 1.合作博弈(cooperative game):指当人们的行为相互作用时,当事人能够达到一个具有约束力的协议,参与人在协议范围内进行的博弈。合作博弈强调的是集体主义、团体理性,团体理性包括效率、公平、公正;,2010-2011学年第二学期,2.非合作博弈(non-cooperative game):指当人们的行为相互作用时,当事人不能够达到一个具有约束
27、力的协议。而非合作博弈则主要研究人们在利益相互影响的局势中如何选择策略使得自己的收益最大,强调个人理性、个人最优决策,其结果是有时有效率,有时则不然。目前经济学家谈到博弈论主要指的是非合作博弈,也就是各方在给定的约束条件下如何追求各自利益最大化,最后达到力量均衡。,2010-2011学年第二学期,(三)完全信息博弈与不完全信息博弈,1.完全信息博弈(complete information game):假定在博弈过程中,每一位参与人对其他参与人的特征、战略空间及收益函数有准确的知识。2.不完全信息博弈(incomplete information game),2010-2011学年第二学期,(
28、四)静态博弈与动态博弈,1.静态博弈(static game):指在博弈中,参与人同时选择或者虽然没有同时选择但后行动者并不知道先行动者采取了什么具体行动。2.动态博弈(dynamic game):指在博弈中,参与人的行动有先后顺序,且后行动者能观察到先行动者所选择的行动。,2010-2011学年第二学期,非合作博弈的分类及对应的均衡,2010-2011学年第二学期,三、完全信息静态博弈,(一)占优战略均衡在博弈中,如果所有参与人都有占优战略存在,博弈将在所有参与人的占优战略的基础上达到均衡。(二)在给定对手选择的情况下,参与人的策略选择是最优的,由这样的最优策略构成的策略组合,即为纳什均衡。
29、,2010-2011学年第二学期,纳什均衡与占优战略均衡比较,占优战略均衡: 我所作的是不管你做什么,我所能做的最好的。 你所做的是不管我做什么,你所能做的最好的。 纳什均衡: 我所做的是给定你所做的,我所能做的最好的。 你所做的是给定我所做的,你所能做的最好的。 占优战略均衡是纳什均衡的特例。,2010-2011学年第二学期,广告博弈一,厂商B 做广告 不做广告 做广告 厂商A 不做广告不论厂商B做不做广告,厂商A的最优战略是做广告,也是占优战略。,2010-2011学年第二学期,厂商B 做广告 不做广告 做广告 厂商A 不做广告对厂商B也是如此,厂商B的最优战略是做广告,也是占优战略。因此
30、,这是一个占优战略均衡,博弈的结果是两个厂商都作广告。,2010-2011学年第二学期,广告博弈二,厂商B 做广告 不做广告 做广告 厂商A 不做广告与上例不同的是,不论厂商A和B都不做广告时,厂商B的利润仍是2。厂商A的利润此时为20(也许因为A的广告主要是防御性的,用来反驳B的声明,并且很昂贵,因而不做广告A可以减少一大笔开支)。,2010-2011学年第二学期,现在厂商A没有占优战略,它的最优决策取决于厂商B的选择。如果厂商B做广告,则A的最好也做广告,若B不做广告,A不做广告是最优选择。,厂商B 做广告 不做广告 做广告 厂商A 不做广告,2010-2011学年第二学期,若两厂商必须同
31、时作决策,A应该怎么做? 厂商A必须站在B的角度考虑问题,看厂商B如何做?显然,B有一个占优战略,因为不论A怎么做,B都作广告。因此A肯定B会做广告,意味着A也做广告。达到了纳什均衡。厂商B做广告 不做广告做广告厂商A 不做广告,2010-2011学年第二学期,通常一个博弈并不一定有单一的纳什均衡。有时会有好几个,如在市场进入博弈中有两个纳什均衡。有时又会不存在纳什均衡。,2010-2011学年第二学期,不存在纳什均衡的情况,小偷不偷 偷 不睡觉保安 睡觉这类博弈属于在一次性对策中没有自动实现的均衡性策略组合的对策,即两个局中人之间的利益始终不相一致。,2010-2011学年第二学期,存在两个纳什均衡的情况,丈夫拳击 芭蕾 拳击妻子 芭蕾,2010-2011学年第二学期,复习思考题: 1试用搜寻理论分析“货比三家”的信息经济学原理?2. 试借助搜寻理论,分析发生在80年或90年代中国东南沿海地区的“民工流现象”。3. 试借助搜寻理论分析职员的“跳槽”现象。4. 信息搜寻的基本原理是什么?,