第 17 章 勾股定理一、复习目标1、进一步理解勾股定理及其逆定理,弄清两定理之间的关系。2、复习直角三角形的有关知识,形成知识体系。3、运用勾股定理及其逆定理解决问题.二、课时安排 来源:学优高考网 gkstk1 课时三、复习重难点重点:勾股定理以及逆定理难点:定理的应用四、教学过程(一)知识梳理
最新人教版八年级数学第17章勾股定理教案Tag内容描述:
1、第 17 章 勾股定理一、复习目标1、进一步理解勾股定理及其逆定理,弄清两定理之间的关系。2、复习直角三角形的有关知识,形成知识体系。3、运用勾股定理及其逆定理解决问题.二、课时安排 来源:学优高考网 gkstk1 课时三、复习重难点重点:勾股定理以及逆定理难点:定理的应用四、教学过程(一)知识梳理1.勾股定理:直角三角形中 的平方和等于 的平方即:如果直角三角形的两直角边分别是 a、b,斜边为 c,那么 2.勾股定理的逆定理:如果三角形的三边长为 a、b、c 满足 ,那么这个三角形是直角三角形3.如果一个命题的题设和结论与另一个命题。
2、 勾股定理在几何中的应用 【学习目标】 能运用勾股定理及直角三角形的判定条件解决实际问题 【重、难点】 在运用勾股定理解决实际问题的过程中,感受数学的“转化”思 想 ( 把解斜三角形问题转化为解直角三角形的问题 ) ,进一步发展有条理思考和有条理表达的能力,体会数学的应用价值 【合作探究】 1如图,一圆柱体的底面周长为 20cm,高为 4cm,是上底面的直径 一 只蚂蚁从点。
3、第 十七章 勾股定理,数学8年级下册 R,17.2 勾股定理的逆定理,勾股定理 如果直角三角形的两条直角边长分别为 a,b,斜边长为c,那么a2+b2=c2,题设(条件):直角三角形的 两直角边长为a,b,斜边长为c ,结论:a2+b2=c2,问题1 回忆勾股定理的内容,形,数,课前导入,如果三角形的三边长a,b,c 满足a2+b2=c2, 那么这个三角形是否是直角三角形?,想一想,据说,古埃及人曾用下面的方法画直角:把一根长 绳打上等距离的13 个结,然后以3 个结间距,4 个结间 距、5 个结间距的长度为边长,用木桩钉成一个三角形, 其中一个角便是直角你认为结论正。
4、17.1 勾股定理(三)姓名 班级 组别 自学完成时间 30 分钟学习内容:课本 P68P69【学习目标】1、利用勾股定理,能在数轴上表示无理数的点2、会用勾股定理解决简单的实际问题学习重点:会在数轴上表示 (n 为正整数)学习难点:掌握解决实际问题的数学方法【使用说明】(1)通过自己阅读本导学案和相应课文内容,完成【自主学习】和【基础训练】的问题。(2)课堂上完成【课堂练习】【知识回顾】1、勾股定理的内容:_2、已知等腰三角形腰长是 10,底边长是 16,求这个等腰三角形的面积。3、1394,即 2;若以正整数 _ 和 _ _ 为直角三角形的。
5、第 17 章 勾股定理一、知识梳理1.勾股定理:直角三角形中 的平方和等于 的平方即:如果直角三角形的两直角边分别是 a、b,斜边为 c,那么 2.勾股定理的逆定理:如果三角形的三边长为 a、b、c 满足 ,那么这个三角形是直角三角形3.如果一个命题的题设和结论与另一个命题的题设正好相反,那么把这样的两个命题叫做 ,如果把其中叫做原命题,另一个叫做它的_.4.一般的,如果一个定理的逆命题经过证明是正确的,它也是一个_,我们称这两个定理为 .5、应用勾股定理和它的逆定理来解决实际问题,在应用定理时,应注意:(1)没有图的要按题意画好图。
6、 1 第17章 勾股定理 一、复习目标 1、进一步理解勾股定理及其逆定理,弄清两定理之间的关系。 2、复习直角三角形的有关知识,形成知识体系。 3、运用勾股定理及其逆定理解决问题. 二、课时安排 1 课时 三、复习重难点 重点:勾股定理以及逆定理 难点:定理的应用 四、教学过程 (一)知识梳理 1.勾股定理:直角三角形中 的平方和等于 的平方即:如果直角三角 形的两直角边分别是a、b,斜边为c,那么 2.勾股定理的逆定理:如果三角形的三边长为a、b、c 满足 ,那么这 个三角形是直角三角形 3.如果一个命题的题设和结论与另一个命题的题设正好。
7、17.1 勾股定理(一)姓名 班级 组别 自学完成时间 30 分钟学习内容:课本 P64P66【学习目标】1了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。2培养在实际生活中发现问题总结规律的意识和能力。了解我国古代在勾股定理研究方面所取得的成就 学习重点:勾股定理的内容及证明学习难点:勾股定理的证明【使用说明】(1)通过自己阅读本导学案和相应课文内容,完成【自主学习】和【基础训练】的问题。(2)课堂上完成【课堂练习】。【知识回顾】直角三角形中,直角所对的边叫_边,锐角所对的边叫_边。直角三角形的性质。
8、17.1 勾股定理(二)姓名 班级 组别 自学完成时间 30 分钟学习内容:课本 P66P67【学习目标】1、能运用勾股定理的数学模型解决现实世界中的实际问题学习重点:会用勾股定理解决简单的实际问题学习难点:实际问题向数学问题的转化【使用说明】来源:gkstk.Com(1)通过自己阅读本导学案和相应课文内容,完成【自主学习】和【基础训练】的问题。(2)课堂上完成【课堂练习】【知识回顾】1.求出下列直角三角形中未知的边2.归纳:在求解直角三角形的未知边时需要知道哪些条件?应该注意哪些问题?【自主学习】1、一个门框的尺寸如图所示: (1) 。
9、,RJ八(下) 教学课件,17.1 勾股定理,第十七章 勾股定理,第1课时 勾股定理,1.经历勾股定理的探究过程,了解关于勾股定理的一 些文化历史背景,会用面积法来证明勾股定理,体会数形结合的思想.(重点) 2.会用勾股定理进行简单的计算 .(难点),其他星球上是否存在着“人”呢?为了探寻这一点,世界上许多科学家向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等.,新课引入,据说我国著名的数学家华罗庚曾建议“发射”一种勾股定理的图形(如图).,很多学者认为如果宇宙“人”也拥有文明的话,那么他们一定会认识这种语言,因为几乎。
10、1第十七章 勾股定理17.1 勾股定理(第 1 课时)教学目标1 .了解勾股定理的文化背景,了解利用拼图验证勾股定理的方法 .2 .能说出勾股定理,并能应用其进行简单的计算 . 过程与方法1 .在勾股定理的探索过程中,经历观察猜想归纳验证的数学发现过程 .2 .发展合情推理的能力,体会数形结合思想、由特殊到一般的数学思想、分类讨论思想 .情感、态度与价值观通过对勾股定理历史的了解和实例应用,体会勾股定理的文化价值;通过获得成功的经验和克服困难的经历,增强学习数学的信心,激发学生的民族自豪感和爱国情怀重点与难点【重点】 探索和验证勾股定。
11、1第十七章 勾股定理17.1 勾股定理(第二课时)教学目标能说出勾股定理,能运用勾股定理的数学模型解决现实世界的实际问题 . 过程与方法1 .通过从实际问题中抽象出直角三角形这一模型,强化转化思想,培养学生解决现实问题的意识和能力 .2 .经历探究勾股定理在实际问题中的应用过程,进一步体会勾股定理的应用方法 .情感、态度与价值观在例题分析和解决过程中,让学生感受勾股定理在实际生活中的应用 .同时在学习过程中体会获得成功的喜悦,提高学生学习数学的兴趣和信心 .重点与难点【重点】 运用勾股定理解决实际问题 .【难点】 勾股定理的灵活。
12、 勾股定理在求距离中应用 教学目标: 1.能运用勾股定理及其逆定理解决实际问题 2.在运用勾股定理解决实际问题的过程中,感悟数学的 “转化 ”思想,进一步发展有条理思考和有条理表达的能力, 体会勾股定理的文化价值, 增强应用意 识 教学重点: 勾股定理的实际应用。 教学难点: 转化思想的过程渗透。 教学过程: 一、课前预习 : 1在 ABC 中, A , B, C 的对边分别。
13、第 十七章 勾股定理,数学8年级下册 R,17.1 勾股定理,相传2500年前,毕达哥拉斯有一次在朋友家里做客时,发现朋友家用砖铺成的地面中反映了A、B、C面积之间的数量关系进而发现直角三角形三边的某种数量关系,我们也来观察右图中的地面,你也能发现A、B、C面积之间有什么数量关系吗?,课前导入,1、你曾见过这个图案吗?,活动1 欣赏图片了解历史,赵爽弦图,这个图案是3世纪我国汉代的赵爽在注解周髀算经时给出的,人们称之为“赵爽弦图”,学习新知,2、你听说过“勾股定理”吗?,如:勾三,股四,弦五,在我国古代,人们将直角三角形中短的直角边。
14、1第十七章 勾股定理17.2 勾股定理的逆定理教学目标1.理解并能证明勾股定理的逆定理 .2 .理解原命题、逆命题、逆定理的概念 .3 .会认识并判断勾股数,掌握勾股定理的逆定理,并能灵活应用逆定理判定一个三角形是否为直角三角形 . 过程与方法1 .通过对勾股定理的逆定理的探索,经历知识发生、发展和形成的过程 .2 .通过用三角形的三边的数量关系来判断三角形的形状,体验数形结合方法的应用 .情感、态度与价值观1 .通过用三边之间的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐辩证统一的关系 .2 .在对勾股定理。
15、117.2 勾股定理的逆定理教学目标一、基本目标【知识与技能】掌握勾股定理的逆定理,并能进行简单运用;理解互逆命题的有关概念【过程与方法】经历探索直角三角形的判定条件过程,理解勾股定理的逆定理【情感态度与价值观】激发学生解决问题的愿望,体会勾股定理逆向思维所获得的结论,明确其应用范围和实际价值二、重难点目标【教学重点】掌握勾股定理的逆定理,勾股数,理解互逆命题的有关概念【教学难点】利用勾股定理的逆定理解决问题教学过程环节 1 自学提纲,生成问题【5 min 阅读】阅读教材 P31P33 的内容,完成下面练习【3 min 反。
16、八年级第勾股定理单元测试题一、 填空题(本大题 8小题,每小题 3分,共 24分)1、 若直角三角形两直角边分别为 6 和 8,则斜边为 _ ;2、能够成为直角三角形三条边长的正整数,称为勾股数。请你写出三组勾股数_ 、_ 、_ ;3、如图,求出下列直角三角形中未知边的长度。C=_ b=_ h=_ 4、写出“两直线平行内错角相等”的逆命题: ; 此逆命题是_(填“真”或“假” )命题;5、如图,字母 B 所代表的正方形的面积是 ;6、在 RtABC 中,C=90,BCAC=34,AB=10,则AC=_,BC=_7、如图,ACCE,AD=BE=13,BC=5,DE=7,那么 AC= ;8、有两棵树,一。
17、第 17 章 勾股定理一、复习目标1、进一步理解勾股定理及其逆定理,弄清两定理之间的关系。2、复习直角三角形的有关知识,形成知识体系。3、运用勾股定理及其逆定理解决问题.二、课时安排 来源:学优高考网 gkstk1 课时三、复习重难点重点:勾股定理以及逆定理难点:定理的应用四、教学过程(一)知识梳理1.勾股定理:直角三角形中 的平方和等于 的平方即:如果直角三角形的两直角边分别是 a、b,斜边为 c,那么 2.勾股定理的逆定理:如果三角形的三边长为 a、b、c 满足 ,那么这个三角形是直角三角形3.如果一个命题的题设和结论与另一个命题。
18、117.1 勾股定理第 1 课时 勾股定理及其证明教学目标一、基本目标【知识与技能】1了解勾股定理的发现过程2掌握勾股定理的内容3会用面积法证明勾股定理【过程与方法】经历观察猜想归纳验证等一系列过程,体会数学定理发现的过程;在观察、猜想、归纳、验证等过程中培养学生的数学语言表达能力和初步的逻辑推理能力【情感态度与价值观】通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,体验解决问题的方法的多样性,培养学生的合作交流意识和探索精神二、重难点目标【教学重点】勾股定理的探究及证明【教学难点】掌握。
19、1第十七章勾股定理教案 课题:17.1 勾股定理(1) 课型:新授课 【学习目标】:1了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。2培养在实际生活中发现问题总结规律的意识和能力。【学习重点】:勾股定理的内容及证明。【学习难点】:勾股定理的证明。【学习过程】一、课前预习1、直角ABC 的主要性质是:C=90(用几何语言表示)(1)两锐角之间的关系: (2)若 D 为斜边中点,则斜边中线 (3)若B=30,则B 的对边和斜边: 2、(1)、同学们画一个直角边为 3cm 和 4cm 的直角ABC,用 刻度尺量出 AB 的长。(2)、。