八年级 下册,19.2.1 正比例函数(1),本课是在学习函数概念及其表示法的基础上,用函数观点看小学中的正比例关系,通过观察具体问题中函数的解析式,抽象出正比例函数的模型,课件说明,学习目标:1理解正比例函数的概念;2经历用函数解析式表示函数关系的过程,进一步发展符号意识;经历从一类具体函数中抽象
19.2.1正比例函数2Tag内容描述:
1、八年级 下册,19.2.1 正比例函数(1),本课是在学习函数概念及其表示法的基础上,用函数观点看小学中的正比例关系,通过观察具体问题中函数的解析式,抽象出正比例函数的模型,课件说明,学习目标:1理解正比例函数的概念;2经历用函数解析式表示函数关系的过程,进一步发展符号意识;经历从一类具体函数中抽象出正比例函数概念的过程,发展数学抽象概括能力 学习重点:正比例函数的概念,课件说明,问题1 2011年开始运营的京沪高速铁路全长1 318 km设列车的平均速度为300 km/h考虑以下问题:(1)乘京沪高铁列车,从始发站北京南站到终点站 上。
2、第十九章 一次函数19.2 一次函数19.2.1 正比例函数(2)【教学目标】知识与技能能根据正比例函数的图像,观察归纳出函数的性质;并会简单应用。过程与方法逐步培养学生的观察能力,概括的能力。来源:gkstk.Com情感、态度与价值观通过教师指导发现知识,初步培养学生数形结合的思想以及由一般到特殊的数学思想。【教学重难点】重点:正比例函数的性质及其应用。难点:发现正比例函数的性质 【导学过程】【知识回顾】描点法画函数图象的一般步骤是:、 、 【新知探究】探究一、在两个直角坐标系内,分别画出下列每组函数的图像: y=2x y= x 。
3、1996年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环;大约128天后,人们在25600千米外的澳大利亚发现了它。,情境探究,0,x,y,11.2.1 正比例函数,一般地,形如 y=kx(k是常数且k0)的函数,叫做正比例函数,其中 k 叫做比例系数.,正比例函数的定义:,复习定义,下列函数中哪些是正比例函数?,(2)y = x+2,(1)y =2x,(5)y=x2+1,(3),(4),(6),是,是,不是,不是,不是,不是,随堂练习,练习:,若 是正比例函数,则实数a=_,-4,-2,0,2,4,y=2x,例1 画正比例函数 y =2x 的图象,解:,1. 列表,2. 描点,3. 连线,y=2x,画出正比例函数 , 的图象。
4、这些函数有什么共同点?,这些函数都是常数与自变量的乘积的形式,(2)m = 7.8 V,(5)h = 0.5 n,(4)T = -2 t,(3)y = .54 x,(1)l = 2 r,常数与自变量的乘积,y,K(常数),x,=,看一看,一般地,形如 y=kx(k是常数且k0)的函数,叫做正比例函数,其中 k 叫做比例系数.,正比例函数的定义:,引入定义,下列函数中哪些是正比例函数?,(2)y = x+2,(1)y =2x,(5)y=x2+1,(3),(4),(6),是,是,不是,不是,不是,不是,随堂练习,-4,-2,0,2,4,y=2x,例1 画正比例函数 y =2x 的图象,解:,1. 列表,2. 描点,3. 连线,y=2x,画出正比例函数 , 的图象。
5、第十九章 一次函数 19.2.1 正比例函数,研读课文,认真阅读课本第86至87页的内容,完成下面练习并体验知识点的形成过程.,思考 下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式.,知识点一,正比例函数的定义,(1)圆的周长 随半径 的大小变化而变化.,解:是。,解:是。m=7.8v,(3)每个练习本的厚度为0.5cm,一些练习本摞在一起的总厚度h (单位:cm )随这些练习本的本数n的变化而变化.,解:是。h=0.5n,(4)冷冻一个0 物体,使它每分下降2 ,物体的温度T(单位:)随冷冻时间t(单位:min)的变化而变化.,解:是。T=。
6、第十九章 一次函数,八年级下册数学(人教版),192 一次函数,192.1 正比例函数,第2课时 正比例函数的图象和性质,知识点1:正比例函数的图象 1下列四个函数图象中,属于正比例函数图象的是( ),D,2函数ykx(k0)的图象是( ),B,3(2016丽水)在直角坐标系中,点M,N在同一个正比例函数图象上的是( ) AM(2,3),N(4,6) BM(2,3),N(4,6) CM(2,3),N(4,6) DM(2,3),N(4,6),A,4(2017柳州)如图,直线y2x必过的点是( ) A(2,1) B(2,2) C(1,1) D(0,0),D,5(2017陕西)若一个正比例函数的图象经过A(3,6),B(m,4)两点,则m的值为( ) A2 B8 C2 D8 。
7、第十九章 一次函数,八年级下册数学(人教版),192 一次函数,192.1 正比例函数,第1课时 正比例函数的意义,C,2下列函数关系中,为正比例函数的是( ) A圆的面积S与它的半径r B路程为常数s,行走的速度v和时间t C被除数是常数a时,除数b和商c D三角形底边长是常数a时,其面积S与底边上的高h,D,y4x,24,D,D,8根据下表,y与x之间的函数解析式是_,这个函数是_函数,y3x,正比例,9.汽车由天津驶往相距120千米的北京,s(千米)表示汽车离开天津的距离,t(小时)表示汽车行驶的时间,如图所示 (1)s与t之间的函数解析式为_; (2)当汽车行驶2小时,离开天。
8、19.2.1正比例函数 第1课时,学习目标: 1理解正比例函数的概念;2经历用函数解析式表示函数关系的过程,进一步发展符号意识;经历从一类具体函数中抽象出正比例函数概念的过程,发展数学抽象概括能力学习重点;难点:理解正比例函数的概念;利用正比例函数解决简单的数学问题,(1)下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式: (1)圆的周长l 随半径r的变化而变化,问题导入,(2)铁的密度为7.8g/cm3,铁块的质量m(单位:g)随它的体积V(单位:cm3)的变化而变化,(3)每个练习本的厚度为0.5cm,一些练习本摞。
9、正比例函数(2),第11章 一次函数,1、下列哪些是正比例函数?为什么?,复习,(1),(2),(3),(4),(5),y = kx (k是常数,k0),画出下列函数的图象(1) (2),引入,这两个函数叫什么函数?,怎样画函数的图象?,列表、描点、连线,(2),(1),探究,-4,-2,0,2,4,4,2,0,-2,-4,(0,0),(1,2),(0,0),(1,-2),图象是一条经过原点的直线,正比例函数y = kx( k0)的图象形状:,归纳,探究,正比例函数图象的画法:,两点法:(0,0)、(1,k),(0,0),(1,2),(0,0),(1,-2),范例,例1、在同一平面直角坐标系中画出 下列正比例函数的图象:,两点法:(0,0)、(1,k),(1),(2),。
10、,数学,成正比例的量,更多课件资源:小学数学网,复习,已知路程和时间,怎样求速度?,速度 = 路程时间,已知总价和数量,怎样求单价?,单价 = 总价数量,已知工作总量和工作时间,怎样求工作效率?,工作效率 = 工作总量工作时间,例题,1、一列火车行驶的时间和所行路程如下表,观察上表,回答下面的问题:,(1)表中有哪两种量?,表中有时间和路程两种量,例题,1、一列火车行驶的时间和所行路程如下表,观察上表,回答下面的问题:,(2)路程是怎样随着时间变化的?,时间扩大,路程随着扩大; 时间缩小,路程也随着缩小,当时间是1小时,路程则是90。
11、知 识 管 理,第2课时 正比例函数的图象与性质,1正比例函数ykx(k为常数,k0)的图象 画图步骤:(1)列表:(2)描点:在坐标平面内描两点(0,0)和(1,k);(3)连线:过点(0,0),(1,k)画一条直线 图象特征:正比例函数的图象是一条经过_的直线,知 识 管 理,原点,2正比例函数ykx(k为常数,k0)的性质 性 质:(1)当k0时,直线ykx经过第_象限,从左向右上升,即随着x的增大y也增大;(2)当k0时,直线ykx经过第_象限,从左向右下降,即随着x的增大y反而_ 注 意:正比例函数的性质由解析式中的_决定.,一、三,二、四,减小,k,类型之一 画正比例函数的图。
12、复习:,1、问题:正比例函数解析式是怎样的?,2、平面直角坐标相关知识,练习,知识回顾,2已知 y+2 与 x1 成正比例,且当 x2 时, y4,求 y 与x 的函数解析式.,返回,1.平面直角坐标系的概念,复习:,在平面内有公共原点而且互相垂直的两条数轴,就构成了平面直角坐标系。简称直角坐标系,坐标系所在的平面就叫做坐标平面。,对于平面内任意一 点P,过点P分别向x 轴、y轴做垂线,垂 足在x轴、y轴上对应 的数a,b分别叫做点 P的横坐标、纵坐 标,有序数对(a,b) 叫做点P的坐标。,( a,b),b,a,复习:,如何确定平面直角 坐标系中点的坐标?,坐标。
13、操作:,已知正比例函数y=2x, (1)列表:取自变量x的一些值,根据正比例函数的解析式,填写下表,(2)描点:分别以所取x的值和相应的函数值作为点的横坐标和纵坐标,并在直角坐标平面中描出这些坐标所对应的点.,(3)连线:用光滑的曲线(包括直线)把描出的这些点按照横坐标由小到大的顺序连接起来.,观察,这条直线是函数y=2x的图像,也把它表示为“直线y=2x”.,对于一个函数y=f(x),如果一个图形(包括直线、曲线或其他图形)上任意一点的坐标都满足函数关系式y=f(x),同时以这个函数解析式所确定的x与y的任意一组对应值为坐标的点都在。
14、八年级 下册,19.2.1 正比例函数(2),本课是在上一节课学习正比例函数概念的基础上,进一步研究其图象及其性质,课件说明,课件说明,学习目标:1会画正比例函数的图象;2能根据正比例函数的图象和表达式 y =kx(k0)理解k0和k0时,函数的图象特征与增减性;3通过观察图象、归纳总结概括出正比例函数性质的活动,发展数学感知、数学表征、数学概括能 力,体会数形结合的思想,发展几何直观,课件说明,学习重点:用数形结合的思想方法,通过画图观察,概括正比例函数的图象特征及性质,请你写出两个具体的正比例函数,描点法画函数图象一般步骤:。
15、八年级 下册,19.2.1 正比例函数(1),本课是在学习函数概念及其表示法的基础上,用函数观点看小学中的正比例关系,通过观察具体问题中函数的解析式,抽象出正比例函数的模型,课件说明,学习目标:1理解正比例函数的概念;2经历用函数解析式表示函数关系的过程,进一步发展符号意识;经历从一类具体函数中抽象出正比例函数概念的过程,发展数学抽象概括能力 学习重点:正比例函数的概念,课件说明,问题1 2011年开始运营的京沪高速铁路全长1 318 km设列车的平均速度为300 km/h考虑以下问题:(1)乘京沪高铁列车,从始发站北京南站到终点站 上。
16、19.2.1 正比例函数,知识回顾,1、正比例的解析式是什么?,2、已知y与x成正比例,且当x =-1时, y =-2,求y与x之间的函数关系式。,y=kx(k0),y=2x,例1:画正比例函数 y=2x 的图象,画图步骤:,、列表;,、描点;,、连线。,y=2x 的图象为:,-6,-4,-2,0,2,4,6,x,y=2x,x,-5,-4,-3,-2,-1,5,4,3,2,1,-1 0,-2,-3,-4,-5,1,2,3,4,5,x,y,-5,-4,-3,-2,-1,5,4,3,2,1,-1 0,-2,-3,-4,-5,1,。
17、八年级 下册,19.2.1 正比例函数(2),本课是在上一节课学习正比例函数概念的基础上,进一步研究其图象及其性质,课件说明,课件说明,学习目标:1会画正比例函数的图象;2能根据正比例函数的图象和表达式 y =kx(k0)理解k0和k0时,函数的图象特征与增减性;3通过观察图象、归纳总结概括出正比例函数性质的活动,发展数学感知、数学表征、数学概括能 力,体会数形结合的思想,发展几何直观,课件说明,学习重点:用数形结合的思想方法,通过画图观察,概括正比例函数的图象特征及性质,请你写出两个具体的正比例函数,描点法画函数图象一般步骤:。
18、八年级 下册,19.2.1 正比例函数(2),本课是在上一节课学习正比例函数概念的基础上,进一步研究其图象及其性质,课件说明,课件说明,学习目标:1会画正比例函数的图象;2能根据正比例函数的图象和表达式 y =kx(k0)理解k0和k0时,函数的图象特征与增减性;3通过观察图象、归纳总结概括出正比例函数性质的活动,发展数学感知、数学表征、数学概括能 力,体会数形结合的思想,发展几何直观,课件说明,学习重点:用数形结合的思想方法,通过画图观察,概括正比例函数的图象特征及性质,请你写出两个具体的正比例函数,描点法画函数图象一般步骤:。
19、19.2.1 正比例函数2,1.什么是正比例函数?请举几个实例。,一般地,形如 y=kx(k是常数,k0)的函数,叫做正比例函数 ,其中k叫做比例系数,2.画函数图象的一般步骤是什么?,描点法: 列表 描点 连线,-4,-2,0,2,4,y=2x,用描点法画正比例函数 y =2x 的图象,解:,1. 列表,2. 描点,3. 连线,练习 在同一坐标系中用描点法画出正比例函数的图象,思考 对一般正比例函数y =kx,当k0时,它的图象形状是什么?位置怎样?,在k0 的情况下,图象从左向右看,是上升还是下降?,对应地,当自变量的值增大时,对应的函数 值是随着增大还是减小?,画出正比例。