收藏 分享(赏)

物理化学简明教程第四版第一章.ppt

上传人:kpmy5893 文档编号:9657690 上传时间:2019-08-21 格式:PPT 页数:82 大小:1.31MB
下载 相关 举报
物理化学简明教程第四版第一章.ppt_第1页
第1页 / 共82页
物理化学简明教程第四版第一章.ppt_第2页
第2页 / 共82页
物理化学简明教程第四版第一章.ppt_第3页
第3页 / 共82页
物理化学简明教程第四版第一章.ppt_第4页
第4页 / 共82页
物理化学简明教程第四版第一章.ppt_第5页
第5页 / 共82页
点击查看更多>>
资源描述

1、第二章 热力学第一定律,2019/8/21,(1)热力学的定义,(2)热力学的组成,热力学第一定律:1850 焦耳和迈耶尔,热力学第二定律:1850 开尔文和克劳修斯,热力学第三定律:20世纪初,热力学是研究能量相互转换过程中遵循的规律的科学。,2.1 热力学概论,2019/8/21,2.1 热力学概论,(3)热力学的研究对象,2019/8/21,研究对象是大数量分子的集合体,研究宏观性质,所得结论具有统计意义。,只考虑变化前后的净结果,不考虑物质的微观结构和反应机理。,能判断变化能否发生以及进行到什么程度,但不考虑变化所需要的时间。,局限性,不知道反应的机理、速率和微观性质,只讲可能性,不讲

2、现实性。,(4)热力学的特点,2019/8/21,2.2 几个基本概念,系统:把一部分物体从其它部分划分出来作为研究的对象,这一部分物体即称为系统。,环境:系统以外并且与系统有相互作用的部分称为环境。,(1)系统和环境,1.敞开系统,2.封闭系统,3.孤立系统,2019/8/21,(2)状态和状态函数,状态:指系统的宏观的物理性质和化学性质。,状态函数:状态性质,描述系统性质的宏观物理量。,质量,温度,压力,体积,浓度,密度,粘度,折光率等;内能,焓,熵,自由能均是状态函数。,广度性质(容量性质): 与系统的物质的量成正比,如体积、质量、熵等。这种性质有加和性。,强度性质: 与系统的数量无关,

3、不具有加和性,如温度、压力等。,2019/8/21,(2)状态和状态函数,状态函数的特性:只取决于系统的起始和最终状态。,状态函数在数学上具有全微分的性质:,系统状态函数之间的定量关系式称为状态方程。,2019/8/21,(3)过程和途径,1.过程:系统状态所发生的一切变化。,等温过程 等压过程 等容过程 绝热过程,2019/8/21,2019/8/21,(3)过程和途径,2.途径:系统状态发生变化所采取的具体步骤。,25oC,105Pa,25oC,5105Pa,100oC,105Pa,100oC,5105Pa,等温过程,等温过程,等压过程,等压过程,2019/8/21,(4)热力学平衡,当系

4、统的诸性质不随时间而改变,则系统就处于热力学平衡,它包括下列几个平衡:,1.热平衡 2.力平衡 3.相平衡 4.化学平衡,2019/8/21,(5)功和热,系统吸热,Q 0; 系统放热,Q 0。,热(Q):系统与环境之间因温差而传递的能量。,2019/8/21,(5)功和热,功(W ):系统与环境之间传递的除热以外的其他能量,环境对系统作功,W 0; 系统对环境作功,W 0。,2019/8/21,(5)功和热,f、E、p、s为强度性质,l、Q、V、A为容量性质,机械功,电功,表面功,体积功,强调:Q和W都不是状态函数,与变化途径有关,功的种类,2019/8/21,2.3 热力学第一定律,(1)

5、热功当量,焦耳和迈耶尔(Mayer)自1840年起,用各种实验求证热和功的转换关系,得到如下结果:,这就是著名的热功当量,为能量守恒原理提供了科学的实验证明。,1 cal = 4.184 J,2019/8/21,(2)能量守恒定律,到1850年,科学界公认能量守恒定律是自然界的普遍规律之一。能量守恒与转化定律可表述为:,自然界的一切物质都具有能量,能量有各种不同形式,能够从一种形式转化为另一种形式,但在转化过程中,能量的总值不变。,2019/8/21,(3)内能,内能(热力学能),它是指系统内部能量的总和,包括分子运动的平动能、转动能、振动能、电子运动能、原子核能以及各种粒子之间的相互作用能等

6、等。,内能是具有容量性质的状态函数,用符号U表示,它的绝对值尚无法测定,只能求出它的变化值。,2019/8/21,(4)热力学第一定律,微小变化,内能 U 是状态函数,数学上具有全微分性质,微小变化可用 dU 表示;Q 和 W 不是状态函数,微小变化用 表示,以示区别。,环境对系统作功,W 0。,系统对环境作功,W 0。,系统吸热,Q 0;,系统放热,Q 0;,2019/8/21,(4)热力学第一定律,第一类永动机:一种既不靠外界提供能量,本身也不减少能量,却可以不断对外作功的机器称为第一类永动机,它显然与能量守恒定律矛盾。,第一定律也可表述为: 第一类永动机是不可能制成的。,2019/8/2

7、1,(4)热力学第一定律,例题1:设一电阻丝浸入水中,接上电源通电一段时间。 若选择不同系统,问: U,Q 和 W 为正负还是零?,2019/8/21,(4)热力学第一定律,水,绝热,2019/8/21,(4)热力学第一定律,1.解:,2019/8/21,2.4 体积功,设在定温下,一定量理想气体在活塞筒中克服外压p外,经4 种不同途径,体积从 V1 膨胀到 V2 所作的功。,1.自由膨胀,系统所作功如阴影面积。,(1)体积功,2.等外压膨胀,2019/8/21,体积功,3.多次等外压膨胀,(1)克服外压为 ,体积从 膨胀到 ;,(2)克服外压为 ,体积从 膨胀到 ;,(3)克服外压为 ,体积

8、从 膨胀到 。,因此外压差距越小,膨胀次数越多,所作功也越多。,所作的功= 3次作功之和。,2019/8/21,体积功,4.外压比内压小一个无穷小的值dp :准静态膨胀,外相当于一杯水,水不断蒸发,这样的膨胀过程是无限缓慢的,每一步都接近于平衡态。所作的功为:,准静态膨胀,所作的功最大。,2019/8/21,体积功,1.一次等外压压缩,在外压为p1下,一次从V2压缩到V1 ,环境对系统所作的功(即系统得到的功)为:,压缩过程,将体积从V2压缩到V1,有如下三种途径:,2019/8/21,体积功,2.多次等外压压缩,第一步:用 p” 的压力将系统从 V2 压缩到 V”;,第二步:用 p 的压力将

9、系统从 V” 压缩到 V;,第三步:用 p1 的压力将系统从 V 压缩到 V1。,整个过程所作的功 为三步加和。,2019/8/21,体积功,3.外压比内压大一个无穷小的值dp:准静态压缩,如果将蒸发掉的水气慢慢在杯中凝聚,使压力缓慢增加,恢复到原状,所作功为:,则系统和环境都能恢复到原状。,2019/8/21,(2)可逆过程,因此:功与变化途径有关。虽然始终态相同,但途径不同,所作功也不相同。显然,可逆膨胀,系统对环境作最大功;可逆压缩,环境对系统作最小功。,系统经过某一过程从状态(1)变到状态(2)之后,若能使系统和环境都恢复到原来的状态而未留下任何永久性的变化,则该过程称为“热力学可逆过

10、程”。否则为“不可逆过程”。,可逆过程中的每一步都接近于平衡态,可以向相反的方向进行,从始态到终态,再从终态回到始态,系统和环境都能恢复原状。,2019/8/21,(2)可逆过程,可逆过程的特点,1.状态变化时推动力与阻力相差无限小,系统与环境始终无限接近于平衡态;,3.系统变化一个循环后,系统和环境均恢复到原态;,4.等温可逆过程中系统对环境作最大功,环境对系统作最小功。,2.过程中任何一个中间态均可从正、逆两个方向到达;,2019/8/21,(3)常见的可逆变化过程,1.等温过程 系统的始态温度与终态温度相同,并等于环境温度。,2.等压过程 系统的始态压力与终态压力相同,并等于环境压力。,

11、3.等容过程 系统的容积始终保持不变。,4.绝热过程 系统与环境不发生热的传递。对那些变化极快的过程,如爆炸,快速燃烧,系统与环境来不及发生热交换,那个瞬间可近似作为绝热过程处理。,5.循环过程 系统从始态出发,经过一系列变化后又回到始态的变化过程。循环过程所有状态函数变量等于零。,2019/8/21,2.4 体积功,例题2:在25 oC时,2 mol的H2的体积为15 dm3,此气体 (1)等温下反抗外压105 Pa膨胀到50 dm3; (2)等温下可逆膨胀到体积为50 dm3。 计算两种过程的功。,2.解(1)外压恒定不变,所以该过程为等压不可逆过程,(2)此过程为等温可逆过程,2019/

12、8/21,2.5 定容和定压下的热,(1)等容下的热,系统发生变化只有体积功而不作其他功:,因为dV = 0,所以 ,或 QV = U。,因为 U只取决于系统的始态和终态,所以等容热 QV 也只取决于系统的始态和终态。,D,D,2019/8/21,2.5 定容和定压下的热,(2)等压下的热,等压过程: p始= p外= p终= p(常数),所以:,2019/8/21,2.5定容和定压下的热,定义焓 H = U + pV,焓不是能量,焓是状态函数,等压过程中,系统所吸收的热等于系统焓的增加。,2019/8/21,2.6 热容,每升高单位温度系统所需要吸收的热。,平均热容定义:,比热容:系统的质量等

13、于单位质量时的热容。,摩尔热容Cm :系统的物质的量为1mol时的热容。,等压热容Cp:,等容热容CV:,2019/8/21,热容与温度的函数关系因物质、物态和温度区间的不同而有不同的形式。例如,实际气体的等压摩尔热容与T 的关系有如下经验式:,2.6 热容,热容与温度的关系:,或,式中a,b,c,c,. 是经验常数,由各种物质本身的特性决定,可从热力学数据表中查找。,2019/8/21,1.7 理想气体的内能和焓,(1)盖吕萨克焦耳实验,(2)理想气体的内能和焓,(3)理想气体的Cp与CV之差,(4)绝热过程,2019/8/21,(1)Gay-Lussac-Joule实验,2019/8/21

14、,(2)理想气体的内能和焓,从盖吕萨克焦耳实验得到理想气体的内能和焓仅是温度的函数,用数学表示为:,即:在恒温时,改变体积或压力,理想气体的内能和焓保持不变。,2019/8/21,(3)理想气体的Cp与CV之差,对于理想气体:,因此:,2019/8/21,(3)理想气体的Cp与CV之差,统计热力学证明:,单原子分子系统:,双原子分子(或线型分子)系统:,多原子分子(非线型分子)系统:,n为分子中所含原子的数目,因此:,2019/8/21,1.8 理想气体的绝热过程,气体绝热过程的功,在绝热过程中,系统与环境间无热的交换,但可以有功的交换。根据热力学第一定律:,这时,若系统对外作功,内能下降,系

15、统温度必然降低,反之,则系统温度升高。因此绝热压缩,使系统温度升高,而绝热膨胀,可获得低温。,2019/8/21,理想气体的绝热过程,1.理想气体绝热可逆过程方程式,理想气体在不作其它功的绝热可逆过程中:,2019/8/21,理想气体的绝热过程,2019/8/21,理想气体的绝热过程,理想气体在绝热可逆过程中,p,V,T 三者遵循的关系式称为绝热过程方程式,可表示为:,K1, K2,K3均为常数。,在推导这公式的过程中,引进了理想气体、不作其它功、绝热可逆过程和CV 是与温度无关的常数等限制条件。,pV = nRT,2019/8/21,理想气体的绝热过程,2019/8/21,理想气体的绝热过程

16、,计算过程中未引入其它限制条件,所以该公式适用于组成一定的封闭系统的一般绝热过程,不一定是可逆过程。,2.绝热不可逆过程,若绝热不可逆过程为不作其它功的恒外压膨胀,则有:,若CV与T无关,2019/8/21,理想气体的绝热过程,3.解:,始态1,终态2,例题3. 氦气从的始态0oC, 5105 Pa,10 dm3,经过下面两个过程(1)绝热可逆和(2)绝热恒外压105 Pa膨胀至气体压力为105 Pa终态,计算氦气的终态温度 T2 及两个过程的Q,W, 。(假设氦为理想气体),(1)绝热可逆过程,绝热可逆,2019/8/21,理想气体的绝热过程,该气体的物质的量为:,1.计算终态的温度和体积:

17、,2.Q=0,2019/8/21,理想气体的绝热过程,3.W和 的计算,4. 的计算,2019/8/21,理想气体的绝热过程,(2)绝热不可逆膨胀,始态1,终态2,绝热不可逆,2019/8/21,理想气体的绝热过程,2.Q=0,3.W和U的计算,4.H的计算,2019/8/21,2.6 热容与温度的关系,(1)理想气体:与温度无关,或,(2)其它都与温度有关,2019/8/21,热化学,化学反应通常伴随着吸热或放热现象的发生,对于这些热效应进行精密测定并且同时对其规律进行研究,从而形成化学热力学的一个重要组成部分热化学。,热化学是热力学第一定律在化学过程中的具体应用。,2019/8/21,在只

18、作体积功不作其它功时,当系统发生反应之后,使产物的温度回到反应前始态时的温度,系统放出或吸收的热量,称为该反应的热效应。简称“反应热”。,系统吸热,Q 0;,系统放热,Q 0。,2.10 化学反应的热效应,2019/8/21,(2)等压、等容热效应,等容热效应QV:反应在等容下进行所产生的热效应为QV ,如果不作非膨胀功, ,氧弹量热计中测定的是QV。,等压热效应Qp:反应在等压下进行所产生的热效应为Qp ,如果不作非膨胀功,则 。,2019/8/21,(2)等压、等容热效应,Qp与QV的关系:,是生成物与反应物气体物质的量之差值。,2019/8/21,(2)等压、等容热效应,若参与反应的物质

19、都是液体或固体,没有气体,则 , Qp = QV。,Qp与QV的大小:,2019/8/21,(3)反应进度,反应进度x 的定义:,nB 对反应物取负值,对生成物取正值。,设某反应,2019/8/21,(3)反应进度,引入反应进度的优点:在反应进行到任意时刻,可以用任一反应物或生成物来表示反应进行的程度,所得的值都是相同的。,注意:应用反应进度,必须与化学反应计量方程相对应。,2019/8/21,(4)热化学方程式,表示化学反应与热效应关系的方程式称为热化学方程式。因为U, H 的数值与系统的状态有关,所以方程式中应该注明物态、温度、压力、组成等。对于固态还应注明结晶状态。,2019/8/21,

20、例如:298.15 K时,式中: 表示反应物和生成物都处于标准态时,在298.15 K,反应进度为1 mol时的焓变。,代表气体的压力处于标准态。,(4)热化学方程式,2019/8/21,(4)热化学方程式,2019/8/21,(4)热化学方程式(标准摩尔焓变),注意:反应进度为1mol,表示按计量方程反应物应全部作用完。若是一个平衡反应,显然实验所测值会低于计算值。但可以用过量的反应物,测定刚好反应进度为1 mol 时的热效应。,反应进度为1 mol,必须与所给反应的计量方程对应。,2019/8/21,(5)压力的标准态,随着学科的发展,压力的标准态有不同的规定:,用 表示压力标准态。,最老

21、的标准态为:1 atm,1985年GB规定为:101.325 kPa,2019/8/21,1.11 赫斯定律,反应的热效应只与起始和终了状态有关,与变化途径无关。不管反应是一步完成,还是分几步完成,其热效应相同,当然要保持反应条件(如温度、压力等)不变。,若化学反应过程中只有体积功,且在等温或等压下进行,2019/8/21,2019/8/21,2.11 赫斯定律,应用:对于进行得太慢的或反应程度不易控制而无法直接测定反应热的化学反应,可以用赫斯定律,利用容易测定的反应热来计算不容易测定的反应热。,2019/8/21,2.11 赫斯定律,2019/8/21,2.12 生成热及燃烧热,没有规定温度

22、,一般298.15 K时的数据有表可查。,生成焓仅是个相对值,相对于稳定单质的焓值等于零。,(1)标准摩尔生成焓,在标准压力下,反应温度时,由最稳定的单质合成标准状态下一摩尔物质的焓变,称为该物质的标准摩尔生成焓,用下述符号表示:,(物质,相态,温度),2019/8/21,(1)标准摩尔生成焓,例如:在298.15 K时,这就是HCl(g)的标准摩尔生成焓:,反应焓变为:,2019/8/21,(1)标准摩尔生成焓,nB为计量方程中的系数,对反应物取负值,生成物取正值。,利用各物质的摩尔生成焓求化学反应焓变:,在标准压力 和反应温度时(通常为298.15 K),2019/8/21,(2)燃烧焓,

23、在标准压力下,反应温度时,物质B完全氧化成相同温度的指定产物时的焓变称为标准燃烧焓。用符号 表示。,完全氧化的指定产物通常规定为:,显然,规定的指定产物不同,焓变值也不同,查表时应注意。298.15 K时的燃烧焓值有表可查。,金属 游离态,2019/8/21,(2)燃烧焓,例如:在298.15 K及标准压力下:,则,显然,根据标准摩尔燃烧焓的定义,所指定产物如CO2(g),H2O (l)等的标准摩尔燃烧焓,在任何温度T时,其值均为零。,2019/8/21,(3)利用燃烧焓求化学反应的焓变,化学反应的焓变值等于各反应物燃烧焓的总和减去各产物燃烧焓的总和。,2019/8/21,例如:在298.15

24、 K和标准压力下,有反应:,(A) (B) (C) (D),则,(3)利用燃烧焓求化学反应的焓变,2019/8/21,(4)利用燃烧焓求生成焓,用这种方法可以求一些不能由单质直接合成的有机物的生成焓。,该反应的反应焓变就是CH3OH (l)的生成焓,则:,例如:在298.15 K和标准压力下:,2019/8/21,2.13 基尔霍夫定律,反应焓变值 H 和反应温度有关,如何从一个温度下的H1求另一个温度下的H2 ?,2019/8/21,在1858年首先由基尔霍夫提出了焓变值与温度的关系式,所以称为基尔霍夫定律,2019/8/21,注意点:如有物质发生相变,就要进行分段积分。,2019/8/21,基尔霍夫定律,2019/8/21,基尔霍夫定律,2019/8/21,1.11 基尔霍夫定律,2019/8/21,1.11 基尔霍夫定律,5.解:,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报