1、精选高中模拟试卷第 1 页,共 16 页山海关区外国语学校 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 函数 y=x+xlnx 的单调递增区间是( )A(0,e 2) B(e 2,+) C( ,e 2) D(e 2,+)2 设函数 y= 的定义域为 M,集合 N=y|y=x2,xR,则 MN=( )A BN C1,+) DM3 函数 f(x)= x 的图象关于( )Ay 轴对称 B直线 y=x 对称 C坐标原点对称 D直线 y=x 对称4 集合 , , ,则 ,|42,kZ|2,NxkZ|42,PxkZM, 的关系( )NPA B C DMPMNPN
2、5 抛物线 x2=4y 的焦点坐标是( )A(1,0) B( 0,1) C( ) D( )6 设 xR,则“ |x2|1”是“x 2+x20”的( )A充分而不必要条件 B必要而不充分条件C充要条件 D既不充分也不必要条件7 下列语句所表示的事件不具有相关关系的是( )A瑞雪兆丰年 B名师出高徒 C吸烟有害健康 D喜鹊叫喜8 ABC 的外接圆圆心为 O,半径为 2, + + = ,且| |=| |, 在 方向上的投影为( )A3 B C D39 在数列a n中,a 1=3,a n+1an+2=2an+1+2an(n N+),则该数列的前 2015 项的和是( )A7049 B7052 C140
3、98 D1410110函数 f(x)=ax 2+bx 与 f(x)=log x(ab 0,|a|b|)在同一直角坐标系中的图象可能是( )精选高中模拟试卷第 2 页,共 16 页A B C D11若函数 f(x)=2sin( x+)对任意 x 都有 f( +x)=f( x),则 f( )=( )A2 或 0 B0 C 2 或 0 D2 或 212若多项式 x2+x10=a0+a1(x+1)+a 8(x+1 ) 8+a9(x+1 ) 9+a10(x+1) 10,则 a8=( )A45 B9 C 45 D9二、填空题13当 a0,a 1 时,函数 f(x)=log a(x1)+1 的图象恒过定点
4、A,若点 A 在直线 mxy+n=0 上,则 4m+2n的最小值是 14如图所示 22 方格,在每一个方格中填入一个数字,数字可以是 1、2、3 中的任何一个,允许重复若填入 A 方格的数字大于 B 方格的数字,则不同的填法共有 种(用数字作答)A BC D15已知数列 1,a 1,a 2,9 是等差数列,数列 1,b 1,b 2,b 3,9 是等比数列,则 的值为 16已知 是第四象限角,且 sin(+ )= ,则 tan( )= 17若等比数列a n的前 n 项和为 Sn,且 ,则 = 18二项式 展开式中,仅有第五项的二项式系数最大,则其常数项为 三、解答题精选高中模拟试卷第 3 页,共
5、 16 页19已知等差数列a n的前 n 项和为 Sn,公差 d0,S 2=4,且 a2,a 5,a 14成等比数列()求数列a n的通项公式;()从数列a n中依次取出第 2 项,第 4 项,第 8 项,第 2n项,按原来顺序组成一个新数列b n,记该数列的前 n 项和为 Tn,求 Tn的表达式20圆锥底面半径为 ,高为 ,其中有一个内接正方体,求这个内接正方体的棱长1cm2c21已知函数 ()若曲线 y=f(x)在点 P(1,f (1)处的切线与直线 y=x+2 垂直,求函数 y=f(x)的单调区间;()若对于x(0,+)都有 f(x)2(a 1)成立,试求 a 的取值范围;()记 g(x
6、)=f(x)+x b(b R)当 a=1 时,函数 g(x)在区间e 1,e 上有两个零点,求实数 b 的取值范围精选高中模拟试卷第 4 页,共 16 页22已知函数 f(x)=ax 2+bx+c,满足 f(1)= ,且 3a2c2b(1)求证:a0 时, 的取值范围;(2)证明函数 f(x)在区间( 0,2)内至少有一个零点;(3)设 x1,x 2是函数 f(x)的两个零点,求 |x1x 2|的取值范围23【徐州市 2018 届高三上学期期中】如图,有一块半圆形空地,开发商计划建一个矩形游泳池 及其矩形附属设施 ,并将剩余空地进行绿化,园林局要求绿化面积应最大化其中半圆的圆心为 ,半径为,矩
7、形的一边 在直径上,点 、 、 、 在圆周上, 、 在边 上,且 ,设 (1)记游泳池及其附属设施的占地面积为 ,求 的表达式;(2)怎样设计才能符合园林局的要求?24(本小题满分 10 分)已知函数 f(x )|xa| |xb|,(a0,b0)(1)求 f(x)的最小值,并求取最小值时 x 的范围;精选高中模拟试卷第 5 页,共 16 页(2)若 f(x)的最小值为 2,求证:f(x) .a b精选高中模拟试卷第 6 页,共 16 页山海关区外国语学校 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】B【解析】解:函数的定义域为(0,+)求导函数可得 f
8、(x)=lnx+2,令 f(x)0,可得 xe 2,函数 f(x)的单调增区间是(e 2,+)故选 B2 【答案】B【解析】解:根据题意得:x+1 0,解得 x1,函数的定义域 M=x|x1;集合 N 中的函数 y=x20,集合 N=y|y0,则 MN=y|y0=N故选 B3 【答案】C【解析】解:f(x)= +x=f(x) 是奇函数,所以 f(x)的图象关于原点对称故选 C4 【答案】A【解析】试题分析:通过列举可知 ,所以 .2,6,0,24,6MPN MPN考点:两个集合相等、子集15 【答案】B【解析】解:抛物线 x2=4y 中,p=2, =1,焦点在 y 轴上,开口向上,焦点坐标为
9、(0,1),故选:B精选高中模拟试卷第 7 页,共 16 页【点评】本题考查抛物线的标准方程和简单性质的应用,抛物线 x2=2py 的焦点坐标为(0, ),属基础题6 【答案】A【解析】解:由“|x 2|1” 得 1x3,由 x2+x20 得 x1 或 x2,即“|x2|1”是“x 2+x20”的充分不必要条件,故选:A7 【答案】D【解析】解:根据两个变量之间的相关关系,可以得到瑞雪兆丰年,瑞雪对小麦有好处,可能使得小麦丰收,名师出高徒也具有相关关系,吸烟有害健康也具有相关关系,故选 D【点评】本题考查两个变量的线性相关关系,本题解题的关键是根据实际生活中两个事物之间的关系确定两个变量之间的
10、关系,本题是一个基础题8 【答案】C【解析】解:由题意, + + = ,得到 ,又| |=| |=| |,OAB 是等边三角形,所以四边形 OCAB 是边长为 2 的菱形,所以 在 方向上的投影为 ACcos30=2 = ;故选 C精选高中模拟试卷第 8 页,共 16 页【点评】本题考查了向量的投影;解得本题的关键是由题意,画出图形,明确四边形 OBAC 的形状,利用向量解答9 【答案】B【解析】解:a n+1an+2=2an+1+2an(nN +),(a n+12)( an2)=2 ,当 n2 时,(a n2)(a n12)=2, ,可得 an+1=an1,因此数列a n是周期为 2 的周期
11、数列a1=3,3a 2+2=2a2+23,解得 a2=4,S 2015=1007(3+4 )+3=7052【点评】本题考查了数列的周期性,考查了计算能力,属于中档题10【答案】 D【解析】解:A、由图得 f(x)=ax 2+bx 的对称轴 x= 0,则 ,不符合对数的底数范围,A 不正确;B、由图得 f(x)=ax 2+bx 的对称轴 x= 0,则 ,不符合对数的底数范围, B 不正确;C、由 f(x)=ax 2+bx=0 得:x=0 或 x= ,由图得 ,则 ,所以 f(x)=log x 在定义域上是增函数,C 不正确;D、由 f(x)=ax 2+bx=0 得:x=0 或 x= ,由图得 ,
12、则 ,所以 f(x)=log x 在定义域上是减函数,D 正确精选高中模拟试卷第 9 页,共 16 页【点评】本题考查二次函数的图象和对数函数的图象,考查试图能力11【答案】D【解析】解:由题意:函数 f(x)=2sin(x+),f( +x)=f(x),可知函数的对称轴为 x= = ,根据三角函数的性质可知,当 x= 时,函数取得最大值或者最小值f( )=2 或2故选 D12【答案】A【解析】解:a 8 是 x10=1+( x+1) 10的展开式中第九项(x+1) 8 的系数,a 8= =45,故选:A【点评】本题主要考查二项展开式的通项公式,二项展开式系数的性质以及多项恒等式系数相等的性质,
13、属于基础题二、填空题13【答案】 2 【解析】解:整理函数解析式得 f(x)1=log a(x1),故可知函数 f(x)的图象恒过(2,1)即 A(2,1),故 2m+n=14m+2n2 =2 =2 当且仅当 4m=2n,即 2m=n,即 n= ,m= 时取等号4m+2n的最小值为 2 故答案为:2精选高中模拟试卷第 10 页,共 16 页14【答案】 27 【解析】解:若 A 方格填 3,则排法有 232=18 种,若 A 方格填 2,则排法有 132=9 种,根据分类计数原理,所以不同的填法有 18+9=27 种故答案为:27【点评】本题考查了分类计数原理,如何分类是关键,属于基础题15【
14、答案】 【解析】解:已知数列 1,a 1,a 2,9 是等差数列, a1+a2 =1+9=10数列 1,b 1,b 2,b 3,9 是等比数列, =19,再由题意可得 b2=1q20 (q 为等比数列的公比),b2=3,则 = ,故答案为 【点评】本题主要考查等差数列、等比数列的定义和性质应用,属于中档题16【答案】 【解析】解: 是第四象限角, ,则 ,又 sin(+ ) = ,cos( + )= cos( )=sin(+ )= ,sin( )=cos(+ )= 则 tan( )= tan( )= = 故答案为: 精选高中模拟试卷第 11 页,共 16 页17【答案】 【解析】解:等比数列a
15、 n的前 n 项和为 Sn,且 ,S 4=5S2,又 S2,S 4S2,S 6S4成等比数列,(S 4S2) 2=S2(S 6S4),(5S 2S2) 2=S2(S 65S2),解得 S6=21S2, = = 故答案为: 【点评】本题考查等比数列的求和公式和等比数列的性质,用 S2表示 S4和 S6是解决问题的关键,属中档题18【答案】 70 【解析】解:根据题意二项式 展开式中,仅有第五项的二项式系数最大,则 n=8,所以二项式 = 展开式的通项为Tr+1=( 1) rC8rx82r令 82r=0 得 r=4则其常数项为 C84=70故答案为 70【点评】本题考查二项式定理的应用,涉及二项式
16、系数的性质,要注意系数与二项式系数的区别三、解答题19【答案】 【解析】解:()依题意得: ,解得 精选高中模拟试卷第 12 页,共 16 页a n=a1+(n 1)d=1+2(n1)=2n1即 an=2n1;()由已知得, T n=b1+b2+bn=(2 21)+(2 31)+ +(2 n+11)=(2 2+23+2n+1)n= 【点评】本题主要考查等比数列和等差数列的性质,考查了等比数列的前 n 项和的求法,考查了化归与转化思想方法,是中档题20【答案】 2cm【解析】试题分析:画出图形,设出棱长,根据三角形相似,列出比例关系,求出棱长即可试题解析:过圆锥的顶点 和正方体底面的一条对角线
17、作圆锥的截面,得圆锥的轴截面 ,正方体对SCDSEF角面 ,如图所示1CD设正方体棱长为,则 , ,1x12CDx作 于 ,则 , ,SOEFOE , ,即 ,1S:112 ,即内接正方体棱长为 2xcmcm考点:简单组合体的结构特征21【答案】 【解析】解:()直线 y=x+2 的斜率为 1,函数 f(x)的定义域为(0,+),因为 ,所以, ,所以,a=1精选高中模拟试卷第 13 页,共 16 页所以, , 由 f(x)0 解得 x2;由 f(x)0,解得 0x2所以 f(x)的单调增区间是( 2,+ ),单调减区间是(0,2) () ,由 f(x)0 解得 ; 由 f(x)0 解得 所以
18、,f(x)在区间 上单调递增,在区间 上单调递减所以,当 时,函数 f(x)取得最小值, 因为对于 x(0,+)都有 f(x)2(a1)成立,所以, 即可 则 由 解得 所以,a 的取值范围是 () 依题得 ,则 由 g(x)0 解得 x1; 由 g(x)0 解得 0x1所以函数 g(x)在区间(0,1)为减函数,在区间(1,+)为增函数又因为函数 g(x)在区间e 1,e上有两个零点,所以 ,解得 所以,b 的取值范围是 【点评】本题考查导数与曲线上某点的切线斜率的关系,利用导数求函数的单调区间以及函数的最值22【答案】【解析】解:(1)f(1) =a+b+c= ,3a+2b+2c=0又 3
19、a2c2b,故 3a0,2b0,从而 a0,b0,精选高中模拟试卷第 14 页,共 16 页又 2c=3a2b 及 3a2c2b 知 3a3a2b2ba0,33 2 ,即3 (2)根据题意有 f(0)=0,f(2)=4a+2b+c=(3a+2b+2c)+ac=ac下面对 c 的正负情况进行讨论:当 c0 时,a 0,f(0)=c 0 ,f (1)= 0所以函数 f(x)在区间(0, 1)内至少有一个零点;当 c0 时,a 0,f(1)= 0,f(2)=ac0所以函数 f(x)在区间(1, 2)内至少有一个零点;综合得函数 f(x)在区间( 0,2)内至少有一个零点;(3)x 1,x 2是函数
20、f(x )的两个零点x 1,x 2是方程 ax2+bx+c=0 的两根故 x1+x2= ,x 1x2= = =从而|x 1 x2|= = = 3 , |x1x 2| 【点评】本题考查了二次函数的性质,对于二次函数要注意数形结合的应用,注意抓住二次函数的开口方向,对称轴,以及判别式的考虑;同时考查了函数的零点与方程根的关系,函数的零点等价于对应方程的根,等价于函数的图象与 x 轴交点的横坐标,解题时要注意根据题意合理的选择转化属于中档题23【答案】(1) (2)【解析】试题分析:(1)根据直角三角形求两个矩形的长与宽,再根据矩形面积公式可得函数解析式,最后根据实际意义确定定义域(2)利用导数求函
21、数最值,求导解得零点,列表分析导函数符 号变化规律,确定函数单调性,进而得函数最值精选高中模拟试卷第 15 页,共 16 页(2)要符合园林局的要求,只要 最小,由(1)知,令 ,即 ,解得 或 (舍去),令 ,当 时, 是单调减函数,当 时, 是单调增函数,所以当 时, 取得最小值.答:当 满足 时,符合园林局要求.24【答案】【解析】解:(1)由|x a|xb| |(xa)(x b)|a b |得,当且仅当(xa)(x b)0,即bx a 时,f(x)取得最小值,当 x b,a时,f(x ) min| ab|ab.(2)证明:由(1)知 ab2,( ) 2ab2 2(ab)4,a b ab 2,a bf(x)ab2 ,a b精选高中模拟试卷第 16 页,共 16 页即 f(x) .a b