收藏 分享(赏)

2018年河北省巨鹿县二中高三上学期期中考试数学(理)试卷.doc

上传人:cjc2202537 文档编号:943046 上传时间:2018-05-04 格式:DOC 页数:12 大小:465.50KB
下载 相关 举报
2018年河北省巨鹿县二中高三上学期期中考试数学(理)试卷.doc_第1页
第1页 / 共12页
2018年河北省巨鹿县二中高三上学期期中考试数学(理)试卷.doc_第2页
第2页 / 共12页
2018年河北省巨鹿县二中高三上学期期中考试数学(理)试卷.doc_第3页
第3页 / 共12页
2018年河北省巨鹿县二中高三上学期期中考试数学(理)试卷.doc_第4页
第4页 / 共12页
2018年河北省巨鹿县二中高三上学期期中考试数学(理)试卷.doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、2018 届河北省巨鹿县二中高三上学期期中考试数学(理)试卷本试卷 5 页,23 小题,满分 150 分。考试用时 120 分钟。一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合 A=x|x1000 的 最 小 偶 数 n, 那 么 在 和 两 个 空 白 框 中 , 可 以 分 别 填 入A A1 000 和 n=n+1 B A1 000 和 n=n+2 C A1 000 和 n=n+1 D A1 000 和 n=n+29已知曲线 C1: y=cos x, C2: y=sin (2x+ 23),则下面结论正确的是A把

2、 C1上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移 6个单位长度,得到曲线 C2B把 C1上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移 12个单位长度,得到曲线 C2C把 C1上各点的横坐标缩短到原来的 12倍,纵坐标不变,再把得到的曲线向右平移 6个单位长度,得到曲线 C2D把 C1上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向左平移 12个单位长度,得到曲线 C210已知 F 为抛物线 C: y2=4x 的焦点,过 F 作两条互相垂直的直线 l1, l2,直线 l1与 C 交于 A、 B 两点,直线 l2与 C 交于 D、

3、E 两点,则| AB|+|DE|的最小值为A16 B14 C12 D1011设 xyz 为正数,且 35xyz,则A2 x100 且 该 数 列 的 前 N 项 和 为2 的 整 数 幂 。 那 么 该 款 软 件 的 激 活 码 是A440 B330 C220 D110二、填空题:本题共 4 小题,每小题 5 分,共 20 分。13已知向量 a, b 的夹角为 60,| a|=2,| b|=1,则| a +2 b |= .14设 x, y 满足约束条件210xy,则 32zxy的最小值为 .15已知双曲线 C:21xyab( a0, b0)的右顶点为 A,以 A 为圆心, b 为半径做圆 A

4、,圆 A 与双曲线C 的一条渐近线交于 M、 N 两点。若 MAN=60,则 C 的离心率为_。16如图,圆形纸片的圆心为 O,半径为 5 cm,该纸片上的等边三角形 ABC 的中心为 O。 D、 E、 F 为圆 O上的点, DBC, ECA, FAB 分别是以 BC, CA, AB 为底边的等腰三角形。沿虚线剪开后,分别以BC, CA, AB 为折痕折起 DBC, ECA, FAB,使得 D、 E、 F 重合,得到三棱锥。当 ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_。三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 1721 题为必考题,每个试题

5、考生都必须作答。第 22、23 题为选考题,考生根据要求作答。(一)必考题:共 60 分。17 (12 分) ABC 的内角 A, B, C 的对边分别为 a, b, c,已知 ABC 的面积为23sinaA(1)求 sinBsinC;(2)若 6cosBcosC=1, a=3,求 ABC 的周长.18.(12 分)如图,在四棱锥 P-ABCD 中, AB/CD,且 90BAPCD.(1)证明:平面 PAB平面 PAD;(2)若 PA=PD=AB=DC, 90APD,求二面角 A-PB-C 的余弦值.19(12 分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取 16

6、个零件,并测量其尺寸(单位:cm)根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N(1)假设生产状态正常,记 X 表示一天内抽取的 16 个零件中其尺寸在 (3,)之外的零件数,求 ()PX及 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在 (3,)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查( )试说明上述监控生产过程方法的合理性;( )下面是检验员在一天内抽取的 16 个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.0410.26 9.91 10.13 1

7、0.02 9.22 10.04 10.05 9.95经计算得169.7ix,1616222()()0.1i iisxx,其中 ix为抽取的第 i个零件的尺寸, ,2用样本平均数 x作为 的估计值 ,用样本标准差 s作为 的估计值 ,利用估计值判断是否需对当天的生产过程进行检查?剔除 (3,)之外的数据,用剩下的数据估计 和 (精确到0.01)附:若随机变量 Z服从正态分布2(,)N,则 (3)0.97 4PZ,160.97 4.59 2, 0.8.920.(12 分)已知椭圆 C: 2=xyab( ab0) ,四点 P1(1,1) , P2(0,1) , P3(1, 2) , P4(1, 32

8、)中恰有三点在椭圆 C 上.(1)求 C 的方程;(2)设直线 l 不经过 P2点且与 C 相交于 A, B 两点。若直线 P2A 与直线 P2B 的斜率的和为1,证明: l过定点.21.(12 分)已知函数 )fx( ae2x+(a2) e x x.(1)讨论 (的单调性;(2)若 )f有两个零点,求 a 的取值范围.(二)选考题:共 10 分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的第一题计分。22选修 44:坐标系与参数方程(10 分)在直角坐标系 xOy 中,曲线 C 的参数方程为 3cos,inxy( 为参数),直线 l 的参数方程为4,1xaty( 为 参 数

9、 ).(1)若 a=1,求 C 与 l 的交点坐标;(2)若 C 上的点到 l 的距离的最大值为 17,求 a.23选修 45:不等式选讲(10 分)已知函数 f( x)= x2+ax+4, g(x)= x+1+ x1.(1)当 a=1 时,求不等式 f( x) g( x)的解集;(2)若不等式 f( x) g( x)的解集包含1,1,求 a 的取值范围.2017 年普通高等学校招生全国统一考试理科数学参考答案一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目要求的。1. A 2B 3B 4C 5D 6C7B 8D 9D 10A 11D

10、12A二、填空题:本题共 4 小题,每小题 5 分,共 20 分。13 2314-5 15 2316 315cm三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 1721 题为必考题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。(一)必考题:共 60 分。17 (12 分) ABC 的内角 A, B, C 的对边分别为 a, b, c,已知 ABC 的面积为23sinaA(1)求 sinBsinC;(2)若 6cosBcosC=1, a=3,求 ABC 的周长.解:(1)由题意可得21sin23iABCSbcA,化简可得 3ia,根据正弦定理化简可

11、得: 222snisnCisinC3BB。(2)由 sinC 123cossincos1 3co6BA A,因此可得 3,将之代入 2sinCB中可得: 231sinsisincosin032CC ,化简可得 3ta,6B,利用正弦定理可得 31sin2abBA,同理可得 3c,故而三角形的周长为 2。18.(12 分)如图,在四棱锥 P-ABCD 中, AB/CD,且 90BAPCD.(1)证明:平面 PAB平面 PAD;(2)若 PA=PD=AB=DC, 90APD,求二面角 A-PB-C 的余弦值.(1)证明: /,ABCB,又 P,PA、 PD 都在平面 PAD 内,故而可得 D。又

12、AB 在平面 PAB 内,故而平面 PAB平面 PAD。(2)解:不妨设 2PABCa,以 AD 中点 O 为原点, OA 为 x 轴, OP 为 z 轴建立平面直角坐标系。故而可得各点坐标: 0,02,0,2,0ABaCa,因此可得 2PAaPP,假设平面 B的法向量 1,nxy,平面 的法向量 2,1nm,故而可得 101220Paay ,即 1,0,同理可得2 2nCmnBn,即 2,1。因此法向量的夹角余弦值: 123cos,n。很明显,这是一个钝角,故而可得余弦为 3。19(12 分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取 16 个零件,并测量其尺寸(

13、单位:cm)根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N(1)假设生产状态正常,记 X 表示一天内抽取的 16 个零件中其尺寸在 (3,)之外的零件数,求 ()PX及 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在 (3,)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查( )试说明上述监控生产过程方法的合理性;( )下面是检验员在一天内抽取的 16 个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.0410.26 9.91 10.13 10.02 9.22 1

14、0.04 10.05 9.95经计算得169.7ix,1616222()()0.1i iisxx,其中 ix为抽取的第 i个零件的尺寸, ,2用样本平均数 x作为 的估计值 ,用样本标准差 s作为 的估计值 ,利用估计值判断是否需对当天的生产过程进行检查?剔除 (3,)之外的数据,用剩下的数据估计 和 (精确到0.01)附:若随机变量 Z服从正态分布2(,)N,则 (3)0.97 4PZ,160.97 4.59 2, 0.8.9解:(1) 16740.952.48PX由题意可得, X 满足二项分布 ,B,因此可得 16,0.16.6E(2)由(1)可得 .4085%PX,属于小概率事件, 1故

15、而如果出现 (3,)的零件,需要进行检查。由题意可得 AAA9.7,0.2139.4,310.6, 2故而在 .34,16范围外存在 9.22 这一个数据,因此需要进行检查。此时: .5x,150.9i。20.(12 分)已知椭圆 C:2=1xyab( ab0) ,四点 P1(1,1) , P2(0,1) , P3(1, 2) , P4(1, 32)中恰有三点在椭圆 C 上.(1)求 C 的方程;(2)设直线 l 不经过 P2点且与 C 相交于 A, B 两点。若直线 P2A 与直线 P2B 的斜率的和为1,证明: l过定点.解:(1)根据椭圆对称性可得, P1(1,1) P4(1, 32)不

16、可能同时在椭圆上,P3(1, 2) , P4(1, 32)一定同时在椭圆上,因此可得椭圆经过 P2(0,1) , P3(1, 2) , P4(1, 32) ,代入椭圆方程可得: 2,4baa,故而可得椭圆的标准方程为: 21xy。(2)由题意可得直线 P2A 与直线 P2B 的斜率一定存在,不妨设直线 P2A 为: ykx,P2B 为: 1ykx.联立 2214804ykx,假设 1,Axy, 2,By此时可得: 222281418,44kkk,此时可求得直线的斜率为:22212241488ABkykx,化简可得 21ABkk,此时满足 k。当 2时, AB 两点重合,不合题意。 1当 k时,

17、直线方程为: 22218144kkyxk, 2即 2241kxy,当 时, ,因此直线恒过定点 ,。21.(12 分)已知函数 )fx( ae2x+(a2) e x x.(1)讨论 (的单调性;(2)若 )f有两个零点,求 a 的取值范围.解:(1)对函数进行求导可得 2 11xxxxfeeae。当 0a时, 10xa恒成立,故而函数恒递减 1当 时, lnxxfexa,故而可得函数在 1,lna上单调递减, 2在 1ln,a上单调递增。(2)函数有两个零点,故而可得 0a,此时函数有极小值 1lnl1fa,要使得函数有两个零点,亦即极小值小于 0,故而可得 1lna,令 gl1a,对函数进行求导即可得到 21a,故而函数恒递增,又 g10, ln0,因此可得函数有两个零点的范围为 ,1。(二)选考题:共 10 分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的第一题计分。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高等教育 > 教育学

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报