1、第二节 风险与报酬,一、风险的含义与分类 二、单项资产的风险与报酬 三、投资组合的风险与报酬 四、资本资产定价模型,一、风险的含义与分类 二、单项资产的风险与报酬 三、投资组合的风险与报酬 四、资本资产定价模型,一、风险的含义与分类,(一)风险的涵义,注:风险既可以是收益也可以是损失, 数学表达风险是某种事件(不利或有利)发生的概率及其后果的函数风险=f (事件发生的概率,事件发生的后果), 风险是指资产未来实际收益相对预期收益变动的可能性和变动幅度,(二)风险的类别,系统风险,1.按风险是否可以分散,可以分为系统风险和非系统风险, 又称市场风险、不可分散风险, 由于政治、经济及社会环境等企业
2、外部某些因素的不确定性而产生的风险。, 特点:由综合的因素导致的,这些因素是个别公司或投资者无法通过多样化投资予以分散的。,非系统风险, 特点:它只发生在个别公司中,由单个的特殊因素所引起的。由于这些因素的发生是随机的,因此可以通过多样化投资来分散。, 又称公司特有风险、可分散风险。, 由于经营失误、消费者偏好改变、劳资纠纷、工人罢工、新产品试制失败等因素影响了个别公司所产生的个别公司的风险。,2. 按照风险的来源,可以分为经营风险和财务风险,经营风险, 经营行为(生产经营和投资活动)给公司收益带来的不确定性, 经营风险源于两个方面: 公司外部条件的变动 公司内部条件的变动, 经营风险衡量:息
3、税前利润的变动程度(标准差、经营杠杆等指标),财务风险, 财务风险衡量:净资产收益率(ROE)或每股收益(EPS)的变动(标准差、财务杠杆等), 举债经营给公司收益带来的不确定性, 财务风险来源:利率、汇率变化的不确定性以及公司负债比重的大小,二、单项资产的风险与报酬,(一)单项资产预期收益率与风险,1.预期收益率的衡量, 各种可能情况下收益率(ri) 的加权平均数,权数为各种可能结果出现的概率(Pi ), 计算公式:,2. 风险的衡量, 方差和标准差都可以衡量预期收益的风险, 计算公式:,方差,标准差,(1)方差(2)和标准差(), 方差和标准差都是从绝对量的角度衡量风险的大小,方差和标准差
4、越大,风险也越大。, 适用于预期收益相同的决策方案风险程度的比较,(2)标准离差率 (CV ), 标准离差率是指标准差与预期收益率的比率, 标准离差率是从相对量的角度衡量风险的大小, 适用于比较预期收益不同方案的风险程度, 计算公式:,三、投资组合的风险与报酬,(一)证券投资组合的预期收益率与风险,1. 投资组合的预期收益率, 投资组合中单项资产预期收益率的加权平均数,权数是单项资产在总投资价值中所占的比重, 计算公式:,2. 投资组合方差和标准差,投资组合的方差是各种资产收益方差的加权平均数,加上各种资产收益的协方差。,(1)两项资产投资组合预期收益率的方差,两项资产投资组合, 协方差是两个
5、变量(资产收益率)离差之积的预期值,其中:r1iE(r1)表示证券1的收益率在经济状态i下对其预期值的离差;r2iE(r2)表示证券2的收益率在经济状态i下对其预期值的离差; Pi表示在经济状态i下发生的概率。,(2)协方差(COV(r1,r2) ), 计算公式:,或:, 当COV(r1,r2)0时,表明两种证券预期收益率变动方向相同;当COV(r1,r2)0时,表明两种证券预期收益率变动方向相反; 当COV(r1,r2)0时,表明两种证券预期收益率变动不相关 。,一般来说,两种证券的不确定性越大,其标准差和协方差也越大;反之亦然。, 请看例题分析【例】 表4-2列出的四种证券收益率的概率分布
6、,表4- 2 四种证券预期收益率概率分布,同理:, 相关系数是用来描述投资组合中各种资产收益率变化的数量关系,即一种资产的收益率发生变化时,另一种资产的收益率将如何变化。,(3)相关系数(), 计算公式:, 相关系数与协方差之间的关系:,注意: 协方差和相关系数都是反映两个随机变量相关程度的指标,但反映的角度不同: 协方差是度量两个变量相互关系的绝对值 相关系数是度量两个变量相互关系的相对数,【例】根据表4-2的资料,证券B和C的相关系数为:,当 1 时,表明两种资产之间完全正相关; 当 -1 时,表明两种资产之间完全负相关; 当 0 时,表明两种资产之间不相关。, 相关系数是标准化的协方差,
7、其取值范围(1,1),【例4-2】根据浦发银行(600000)和上海石化(600688)两家公司2005年各月已按派息和拆股调整后的收盘价计算的月收益率均值、协方差、相关系数见表4-3。,表4- 3 浦发银行和上海石化月收益率、标准差(2004年12月至2005年12月),图4- 4 浦发银行和上海石化月收益率的时间序列(2005年),【例】承【例4-2】假设某投资组合中包括50%的浦发银行股和50%的上海石化股。要求:计算这一投资组合的预期收益率和标准差。,月度收益率 :,月度标准差:,N项资产投资组合,N项资产投资组合预期收益的方差,【证明】假设投资组合中包含了N种资产(1)每种资产在投资
8、组合总体中所占的份额都相等( wi=1/N);(2)每种资产的方差都等于2,并以COV(ri,rj)代表平均的协方差。,当N时,【例】假设资产的平均收益方差为50%,任何两项资产的平均协方差为10%。,5项资产投资组合的方差为:,10项资产投资组合的方差为:,图4- 5 投资组合方差和投资组合中的样本数,(二)两项资产投资组合的有效边界,【例4-3】假设某投资组合有X和Y(Y1,Y2,Y3,Y4)中的任一种证券,其相关资料见表4-4所示。,表4- 4 X和Yi证券的相关资料,表4- 5 X和Yi证券投资组合的标准差,图4- 6 X和Yi证券投资组合的机会集,(三)N项资产有效组合与风险,图4-
9、 7 N项资产投资组合的可行集,(一)N项资产投资组合的效率边界 (有效边界 ),边界曲线EF: 效率边界或有效边界,(二)无差异曲线与有效投资组合,图4- 8 无差异曲线与有效投资组合,四、资本资产定价模型,(一)模型基本假定,1.所有的投资者都追求单期最终财富的效用最大化,他们根据投资组合预期收益率和标准差来选择优化投资组合。2.所有的投资者都能以给定的无风险利率借入或贷出资本,其数额不受任何限制,市场上对卖空行为无任何约束。3.所有的投资者对每一项资产收益的均值、方差的估计相同,即投资者对未来的展望相同。4.所有的资产都可完全细分,并可完全变现(即可按市价卖出,且不发生任何交易费)。5.
10、无任何税收。6.所有的投资者都是价格的接受者,即所有的投资者各自的买卖活动不影响市场价格。, 资本资产定价模型某种证券(或组合)的预期收益率等于无风险收益率加上该种证券的风险溢酬(指系统风险溢价)。, 如果将整个市场组合的风险m定义为1,某种证券的风险定义i, 则:i = m ,说明某种证券的系统风险与市场风险保持一致;i m ,说明某种证券的系统风险大于市场风险;i m ,说明某种证券的系统风险小于市场风险。,系数的实质衡量某一种资产或资产组合的市场风险,反映了某一资产收益率相对于市场投资组合收益率变动的程度。 系数越大,资产的系统风险就越大。,图4- 12 系统风险标准化的SML图形,说明
11、: 证券市场线表明单个证券的预期收益与其市场风险或系统风险之间的关系,因此,在均衡条件下,所有证券都将落在一条直线证券市场线。 根据投资组合理论,任一证券对市场组合的贡献与该证券的预期收益率有关;对市场组合风险的影响与该证券与市场组合的协方差有关,但通常不用协方差表示风险,而是采用相对协方差概念,即系数。证券市场线的斜率不是系数,而是市场风险溢价,即, 系统风险标准化的SML, 因素变动对SML线 的影响,图4- 13 通货膨胀增加对SML的影响,. 通货膨胀变化对SML的影响,. 投资者对风险态度变化对SML的影响,图4- 14 市场风险溢价的变化,(二)CAPM参数的确定,1无风险利率,
12、无风险利率的确定,政府债券,零息票债券,无风险投资满足的条件, 无风险利率确定应注意的问题(1)以国债利率作为无风险利率是假设政府没有违约风险,但在一些新兴的市场,曾经出现过政府无法偿付到期债务的现象,因此,需要根据实际情况进行调整。 (2)以国债利率作为无风险利率,是采用名义利率还是实际利率必须与所分析的现金流量有关。(3)如果存在的以外币计量的投资或融资活动,还需要计算外汇风险对一国国债利率的影响。,2市场风险溢价,(1)历史风险溢价, 预测方法:历史数据分析法, 基本步骤: 确定代表市场指数的市场投资组合 确定抽样期间 计算这个期间市场投资组合或股票指数和无风险资产的平均收益率 确定风险
13、溢价,即市场投资组合收益率与无风险资产收益率之间的差额, 美国市场不同时期的风险溢价,表4- 6 美国市场风险溢价历史数据,(2)国家风险溢价,表4- 7 部分国家风险溢价(19701996年),(3)隐含的股票风险溢价,【例】承【例3-11】假设股票现行市价为75元,下一期预期股利为3元,预期增长率为8%,则:必要收益率=12%若目前的无风险利率为5.5%,则:风险溢价率= 12% - 5.5% =6.5%,3系数的确定方法,系数通常根据某种资产(如第j 种)的收益率rj和市场组合收益率rm之间的线性关系确定,反映某一资产或投资组合的市场风险。,随机误差:反映某给定期间实际收益率与回归预测收
14、益率之间的差异, 参数j 和j 可通过回归分析软件确定,(1)系数基本模型, 回归过程中输出的数据R2:统计意义:提供回归适宜度的衡量指标财务意义:提供一家公司的风险(方差)中市场风险所占的比例的估计1-R2:代表公司特有风险, 资本资产定价模型与回归方程的关系,资本资产定价模型,回归方程, 投资组合的系数,投资组合的系数是单项证券系数的加权平均数,权数为各种证券在投资组合中所占的比重,计算公式:,【例4-4】以第三章介绍的青岛啤酒为例,估计青岛啤酒的系数以上证综合指数作为市场组合,以2001年至2005年为估计期间,计算各月离散型收益率,然后以各年算术平均数作为年均收益率。,计算公式:,表4
15、- 8 青岛啤酒与上证综合指数(1994年2003年),图4- 15 青岛啤酒对上证综指回归线(1994年2003年),青岛啤酒的回归统计数据分析 :, 回归线斜率=0.7772 青岛啤酒1994年至2003年收益率的系数 表明如果上证综合指数上升10%,青岛啤酒的收益率只上升7.772%;当市场证券收益率下降10%时,青岛啤酒的收益率只下降7.772%。 回归截距=0.0008,表明青岛啤酒运行略强于市场。 回归R2=0.498262,表明青岛啤酒股票风险(方差)的49.83%来自市场(如利率、通货膨胀风险等),50.17%的风险来自公司特有风险,后一种风险是可分散风险,因此在CAPM中是不
16、能获得相应的补偿的。 系数估计值的标准误差=0.018435,表明在68.26%的置信区间下,该公司股票系数估计值在0.7587650.795635(0.018435+0.7772)范围波动;在95.44%的置信区间下,该公司股票系数估计值在0.740330.81407(20.018435+0.7772)范围波动。, 根据历史数据计算某一只股票系数时,应注意的问题,第一,估计期的期限。,第二,估计收益时间间隔期距(return interval)。,第三,估计中采用的市场指数。,第四,根据回归分析得到的系数应进行一定的调整,以反映估计误差的可能性和系数向平均值回归的趋势。,(2)系数的决定因素
17、, 行业分析(公司的业务类型)在其他条件一定的情况下,从事具有周期性行业的公司的系数就会比非周期性的公司高。, 经营杠杆如果一家公司的经营杠杆系数低于整个行业的平均水平,该公司就应分配较低的系数,反之亦同。, 财务杠杆在其他因素一定的情况下,公司负债比率越高,每股收益的变动幅度就越大,其系数就越高。,根据公司所从事的行业、经营杠杆、财务杠杆估计系数,条件: 所有的公司风险来源于股东(债务系数为零) 并存在税收优惠, 步骤:, 调整无杠杆系数, 估计该公司所从事行业(一个或几个)的无杠杆系数, 确定组成公司、资产或投资项目的行业,公司价值中的现金和短期有价证券属于无风险资产,其系数等于零, 采用
18、市场价值估计公司的财务杠杆水平或公司管理层制定的目标财务杠杆水平或行业的平均负债比率, 根据公司无杠杆系数和财务杠杆水平估计有财务杠杆效应的系数,【例4-5】 迪斯尼公司主要由媒体网络、主题乐园和度假村、影视娱乐和消费产品四个事业部组成。迪斯尼公司2003年无杠杆系数是以不同行业中可比公司的情况来估计每个行业无杠杆系数,然后以现金与公司价值比率进行调整,有关计算结果见表4-9。,表4- 9 迪斯尼公司各事业部无杠杆系数估计值, 计算各事业部2002年的销售收入 采用乘数法计算各事业部的价值 根据各事业部价值占公司总价值的比重,确定迪斯尼公司无杠杆系数,表4- 10 迪斯尼公司无杠杆系数估计值,
19、若:迪斯尼公司负债的市场价值为146.68亿美元,股票市场价值为551.01亿美元,平均负债比率(负债/股权资本)为26.62%,所得税税率为37.3%, 对于缺乏历史数据的非上市公司,选择一家可比公司估计系数,替代公司的可比公司应具备的条件: 可比公司与估价公司(非上市公司)为相同行业 可比公司与估价公司的经营风险相同,估计系数的基本思路: 将可比公司的 调整为, 根据估价公司的负债水平和所得税税率,将 调整为估价公司的,【例4-6】假设XYZ是一家制造家用产品的私人公司,该公司的负债/股权比率为25%,所得税率为40%。与该公司生产同样家用产品的5家上市公司的系数如表4-11中第二栏所示,
20、各上市公司的所得税税率平均为40%,上市公司(算术)平均无杠杆系数(0.9798)计算结果见表中最后一栏。,表4- 11 可比公司无杠杆系数,【例】以青岛啤酒为例,根据历史资料统计,中国证券市场股票投资收益率高于投资相同期限的长期政府债券收益6个百分点。青岛啤酒所在的上海证券交易所的最长的政府债券收益率大约在3.4%,投资股票的平均收益率应该为9.4%左右。青岛啤酒19942003年间股票系数为0.7772,假设青岛啤酒将负债/股东权益比率增加到150%。,B/S150%,则:, 计算青岛啤酒的系数:, 计算青岛啤酒的风险调整折现率或投资者要求的最低收益率:,rs=3.4%+0.8626%=8
21、.572%,四、套利定价理论,套利定价理论(APT-Arbitrage Pricing Theory)是美国学者罗斯在资本资产定价模型(单因素模式市场组合风险)的基础上建立起来的一种多因素模型,认为任何证券的收益率是K个要素的线性函数。,(一)APT模式的假设条件,影响证券收益率的因素不止一个,而是K个因素。 资本市场是完全竞争的市场。 实行多元化投资,可消除只影响单一证券的特定风险非系统风险。 在市场均衡时,投资组合的套利收益为0。 投资者属于风险规避类型。,多元化投资组合特征: 不含非系统风险 无投资额 有足够的证券可以构成一个有效组合使误差=0,(二)套利定价理论的基本模型,APT模式下
22、,证券或资产j的预期收益率为:,式中:K:影响资产收益率因素的数量E(rj1), E(rj2),E(rjk):证券j在因素为1,2,K时的预期收益率:证券j对于因素1,2,K的敏感度,【例】假设无风险利率为6%,与证券j收益率有关的系数为:1=1.2,2=0.2,3=0.3;市场投资组合的预期收益率为12%,国民生产总值(GNP)预期增长率为3%,消费品价格通货膨胀率(CPI)预期为4%,要求:根据APT模式,计算证券j的预期收益率,(三) 套利定价理论与资本资产定价模型的关系,资本资产定价模型共有风险因素是市场 证券组合的随机收益,套利定价理论事先不确定共有的风险因素,(四)套利定价理论的基
23、本思想,在竞争的金融市场上套利将保证无风险资产提供相同的预期收益率。,【例】设A、B、U分别代表三个投资组合。其收益率受单一因素的影响,且均不存在可分散风险。A=1.2,B=0.8,U=1;rA=13.4%,rB=10.6%,rU=15%。A、B 组合的风险与收益是相对应的,因而它们的价格定得适当。U组合的收益较高,大于保证其风险的代价,因而其价格被低估了,它在三个组合中表现出获利机会,从而导致套利交易的形成。,假设投资1 000元建立一个与U组合风险相同 (U=1)的F组合,F组合的投资一半在A组合,一半在B组合。 则:,图4- 16 A、B、U投资组合关系,表4- 12 U与F套利组合,(五)套利定价理论的评价, 优点:包含若干风险因素; 缺点:理论本身没有指明影响证券收益的因素有哪些,及如何衡量这些因素的敏感性。,