收藏 分享(赏)

2015年北京朝阳高三一模数学(文科)试题及答案.doc

上传人:j35w19 文档编号:7806919 上传时间:2019-05-26 格式:DOC 页数:12 大小:1.12MB
下载 相关 举报
2015年北京朝阳高三一模数学(文科)试题及答案.doc_第1页
第1页 / 共12页
2015年北京朝阳高三一模数学(文科)试题及答案.doc_第2页
第2页 / 共12页
2015年北京朝阳高三一模数学(文科)试题及答案.doc_第3页
第3页 / 共12页
2015年北京朝阳高三一模数学(文科)试题及答案.doc_第4页
第4页 / 共12页
2015年北京朝阳高三一模数学(文科)试题及答案.doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、2015 年北京朝阳高三一模数学文科试题及答案北京市朝阳区高三年级第一次综合练习数学试卷(文史类)20154(考试时间 120 分钟 满分 150 分) 本试卷分为选择题(共 40 分)和非选择题 (共 110 分)两部分第一部分(选择题 共 40 分)一、选择题:本大题共 8 小题,每小题 5 分,共 40 分在每小题给出的四个选项中,选出符合题目要求的一项(1)已知全集 ,集合 ,则 等于,Uabcd,AabBc()UABA B C D d,abc(2)已知命题 , ,则:pxRsin1xA , B , :pxRsin1C , D ,:00i 00x(3)若抛物线 的焦点与双曲线 的右焦点

2、重合,则 p的值为2()ypx2xyA B C 24D 2(4)如图所示的程序框图表示的算法功能是A计算 的值123456SB计算 的值C计算 的值D计算 的值1357S结束是Shi 1,2St否输出 S开始 10?St1t第(4)题图(5)已知 , , 满足 ,则13log2x12x333()logxA 12B 3xC 21D 32x(6)函数 图象的一条对称轴方程是()sin()cos()6fxA B. C. D. x3512x23x(7)已知实数 , 满足 其中 若 的最大值为 5,则 z 的最xy20,xytt3zxy小值为A B C D 52101(8)已知边长为 3 的正方形 与正

3、方形 所在的平面互相垂直, 为线段ADEFM上的动点(不含端点) ,过 作 交 于 ,作 交 于CDM/H/GAB,连结 设 ,则下面四个图象中大致描绘了三棱锥GHCx(03)的体积 与变量 变化关系的是MyOx3yOx3y Ox3yOx3yA BC D第二部分(非选择题 共 110 分)二、填空题:本大题共 6 小题,每小题 5 分,共 30 分把答案填在答题卡上 (9) 为虚数单位,计算 = i1i(10)已知平面向量 , 满足 , 与 的夹角为ab1ab,则 60()(11)圆 与 轴相交于 两点,22:()8Cxyy,AB则 弦 所对的圆心角的大小为 AB(12)一个四棱锥的三视图如图

4、所示,其中侧视图为正三角形,则该四棱锥的体积是 ,四棱锥侧面中最大侧面的面积是 (13)稿酬所得以个人每次取得的收入,定额或定率减除规定费用后的余额为应纳税所得额,每次收入不超过 4000 元,定额减除费用 800 元;每次收入在 4000 元以上的,定率减除 20%的费用.适用 20%的比例税率,并按规定对应纳税额减征 30%,计算公式为:(1)每次收入不超过 4000 元的:应纳税额=(每次收入额800)20%(130%)(2)每次收入在 4000 元以上的:应纳税额=每次收入额(120%)20%(130%).已知某人出版一份书稿,共纳税 280 元,这个人应得稿费(扣税前) 为 元(14

5、)记 为区间 的长度已知函数 , ( ),其值域为12x12,x2xy,a0,则区间 的长度的最小值是 ,mn,n三、解答题:本大题共 6 小题,共 80 分解答应写出文字说明,演算步骤或证明过程(15) (本小题满分 13 分)第(12)题图1 1 正 视 图 侧 视 图 俯 视 图 在 中, , , ABC36cosBC()求 的长;()求 的面积(16) (本小题满分 13 分)某次考试结束后,为了解甲、乙两所学校学生的数学考试情况,随机抽取甲、乙两校各 10 名学生的考试成绩,得茎叶图如图所示(部分数据不清晰):()请根据茎叶图判断哪个学校的数学成绩平均水平较高(直接写出结果) ;()

6、若在抽到的这 20 名学生中,分别从甲、乙两校随机各抽取 1 名成绩不低于 90 分的学生,求抽到的学生中, 甲校学生成绩高于乙校学生成绩的概率(17) (本小题满分 14 分)如图,在三棱柱 中,各个侧面均是边长为 的1CBA2正方形, 为线段 的中点D()求证: 平面 ;B1()求证:直线 平面 ;1ADC()设 为线段 上任意一点,在 内的平面区域(包括边界)是否存在点MB1,使 ,并说明理由EA BCDA1 B1C1甲 校 乙 校 329 015 68 6* 21 80 *22*7 3 6 65 85 (18) (本小题满分 13 分)设数列 的前 项和为 ,且 , , .nanS14

7、a1nSN()写出 , , 的值;234()求数列 的通项公式;n()已知等差数列 中,有 , ,求数列 的前 项和 b2a3bnabnT(19) (本小题满分 14 分)已知椭圆 的两个焦点分别为 ,离心率2:1(0)xyCab12(,0)(,F为 过焦点 的直线 (斜率不为 0)与椭圆 交于 两点,线段 的中点为 ,632Fl C,ABD为坐标原点,直线 交椭圆于 两点OOD,MN()求椭圆 的方程;C()当四边形 为矩形时,求直线 的方程12Fl(20) (本小题满分 13 分)已知函数 , ()exafxR()当 时,求曲线 在点 处的切线方程;0a(yf1,()f()当 时,求证:

8、在 上为增函数;1)x0()若 在区间 上有且只有一个极值点,求 的取值范围()fx(0,1) a北京市朝阳区高三年级第一次综合练习数学 参考答案(文史类)2015.4一、选择题:本大题共 8 小题,每小题 5 分,共 40 分在每小题给出的四个选项中,选出符合题目要求的一项题号 (1) (2) (3) (4) (5) (6) (7) (8)答案 B D C B A C D A二、填空题:本大题共 6 小题,每小题 5 分,共 30 分把答案填在答题卡上 题号 (9) (10) (11) (12) (13) (14)答案 i3290367428003三、解答题:本大题共 6 小题,共 80 分

9、解答应写出文字说明,演算步骤或证明过程(15) (本小题满分 13 分)()因为 , ,又 ,cos3B(0,)22sincos1B所以 .in由正弦定理得, .siinACB所以 .632AC所以 . 6 分4()在 中,ABCsini(60)Bcossin6013in2=6+= .32所以 = = . 13 分1sin2ABCS1463+26(16) (本小题满分 13 分)解:()从茎叶图可以看出,乙校 10 名学生的考试成绩的平均分高于甲校 10 名学生的考试成绩平均分,故乙校的数学成绩整体水平较高 4分()设事件 :分别从甲、乙两校随机各抽取 1 名成绩不低于 90 分的同学,抽到的

10、M学生中,甲校学生成绩高于乙校学生成绩由茎叶图可知,甲校成绩不低于 90 分的同学有 2 人,从小到大依次记为 ;12,A乙校成绩不低于 90 分的同学有 5 人,从小到大依次记为 12345,B其中 12123459,3,90,1,9,698.AB=分别从甲、乙两校各随机抽取 1 名成绩不低于 90 分的同学共有这 10 种可能121345223245,BAAB其中满足“抽到的学生中,甲校学生成绩高于乙校学生成绩”共有这 4 种可能1212,AB所以 42()105PM即分别从甲、乙两校随机各抽取 1 名成绩不低于 90 分的同学,抽到的学生中,甲校学生成绩高于乙校学生成绩的概率为 . 13

11、 分25(17) (本小题满分 14 分)解:()证明:因为三棱柱的侧面是正方形,所以 , .11,CBACB=I所以 底面 因为 底面 ,所以 D1D由已知可得,底面 为正三角形ABC因为 是 中点,所以 因为 ,所以 平面 5 分1=1AC()证明:如图,连接 交 于点 ,连接 1B1OD显然点 为 的中点OC因为 是 中点, 所以 DA1/A又因为 平面 , 平面 ,1B1BCD所以直线 平面 10/分()在 内的平面区域(包括边界)存在一点 ,使 DBC1 EDM此时点 是在线段 上. 证明如下:E1过 作 交线段 于 ,CD由()可知 平面 ,而 平面B1AE,1AC所以 DCEA

12、BCDA1 B1C1OC1A BCDA1 B1ME又 , ,所以 平面 1CED1BC=IEDBC1又 平面 ,所以 14 分MM(18) (本小题满分 13 分)()解:因为 , ,14a1nS所以 , ,2321248aa 3 分431486S()当 时, n1nnnS又当 时, 1a所以 6 分4,2.n()依题意, , .ba38ba则由 得, , ,则 .1428d104d(1)nb所以2,().nnab所以 .1*)nN因为 =T2341nnababab,4561202.()2()n所以 .567 31nn 所以4 232.(1)nT.133()(62nnn 所以 . 13 分36

13、2)nnT(19) (本小题满分 14 分)解:()由题意可得解得 , .22,63,cab6a2b故椭圆的方程为 5 分216xy()由题意可知直线 斜率存在,设其方程为 ,点 ,l (2)ykx1(,)Axy, , ,2(,)Bxy3(,)Mxy3(,)Nx由 得 ,1,6()ykx222()160kk所以 2123因为 ,121224()3kykx所以 中点 AB226,3Dk因此直线 方程为 O0xy()由 解得 , 20,16xky232k33xky因为四边形 为矩形,所以 ,12MFN20FMN即 333(,)(,)0xyxy所以 24所以 2(91)03k解得 故直线 的方程为

14、14 分l3(2)yx(20) (本小题满分 13 分)解:函数 定义域为 , .()fx0x32()exxaf()当 时, , .a()exff(1)x所以 .(1)e,2f所以曲线 在点 处的切线方程是 ,yfx(1,)f e2(1)yx即 . 3 分2e=0() 当 时, .1a()fx321ex设 ,则 .()gx322()(31)gx令 得, 或 ,注意到 ,所以 .()1)(0x13x013令 得,注意到 ,得 .()3)(gx013x所以函数 在 上是减函数,在 上是增函数.()10,1(,)3所以函数 在 时取得最小值,且 .()gx32()07g所以 在 上恒大于零.0,于是

15、,当 , 恒成立.(,)x(fx321e0x所以当 时,函数 在 上为增函数. 7 分1a0,()问另一方法提示:当 时, .1a()fx321ex由于 在 上成立,即可证明函数 在 上为增函数.320x,()f0,() () . 32()e)xxf设 , .()hx32ax2()3hxa(1) 当 时, 在 上恒成立,0()0,即函数 在 上为增函数.x,而 , ,则函数 在区间 上有且只有一个零点 ,()ha(1)20h()hx0,10x使 ,且在 上, ,在 上, ,故 为函数0fx0,x()f0在区间 上唯一的极小值点 ;()(2)当 时,当 时, 成立,函数 在区间 上ax,12()30hx()hx,1为增函数,又此时 ,所以函数 在区间 恒成立,即 ,(0) ,1()0f故函数 在区间 为单调递增函数,所以 在区间 上无极值;()fx,1()fx0,(3)当 时, .0ah32321xaxa当 时,总有 成立,即 成立,故函数 在区间 上,x()0()0f()fx0,1为单调递增函数,所以 在区间 上无极值.fx,1综上所述 . 13 分0a

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报