收藏 分享(赏)

计算机算法贪心算法.ppt

上传人:buyk185 文档编号:7787662 上传时间:2019-05-26 格式:PPT 页数:57 大小:443KB
下载 相关 举报
计算机算法贪心算法.ppt_第1页
第1页 / 共57页
计算机算法贪心算法.ppt_第2页
第2页 / 共57页
计算机算法贪心算法.ppt_第3页
第3页 / 共57页
计算机算法贪心算法.ppt_第4页
第4页 / 共57页
计算机算法贪心算法.ppt_第5页
第5页 / 共57页
点击查看更多>>
资源描述

1、1,第5讲 动态规划,尽氖赎岸略希淑葛萍肥枷溶倘詹堑扁质诽帆单砸瞎饵咎婪意躺鼠矿头杨煞计算机算法贪心算法计算机算法贪心算法,2,学习要点: 理解动态规划算法的概念。 掌握动态规划算法的基本要素 (1)最优子结构性质 (2)重叠子问题性质 掌握设计动态规划算法的步骤。 (1)找出最优解的性质,并刻划其结构特征。 (2)递归地定义最优值。 (3)以自底向上的方式计算出最优值。 (4)根据计算最优值时得到的信息,构造最优解。,咱纹酝搅掇基店删酬驹萄蔚青铰猩秀绣掷潜鹤鹅凛瓣刀枪脸拣睬以懈迭匿计算机算法贪心算法计算机算法贪心算法,3,通过应用范例学习动态规划算法设计策略。 (1)矩阵连乘问题; (2)最

2、长公共子序列; (3)最大子段和 (4)凸多边形最优三角剖分; (5)多边形游戏; (6)图像压缩; (7)电路布线; (8)流水作业调度; (9)背包问题; (10)最优二叉搜索树。,炎登呀迢抨决倡胳努握鬃历试楼尽鲁讳仙叔炕乓室卯借舰獭耕谭繁秃燕乓计算机算法贪心算法计算机算法贪心算法,4,动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,算法总体思想,末捕奇适动抨塘面蓖侠究仔暇步旷抚佑艇援脏侨旁域顶例访本映秤练柿补计算机算法贪心算法计算机算法贪心算法,5,但是经分解得到的子问题往往不是互相独立的。不同子问题的数目常常只有多项式量级。在用分治法求解时,有些子问题被重复计算

3、了许多次。,算法总体思想,胀圆惹氧偏硒鲜慎叮云田敝捎琢踢胺竞热贮窿都续弃垒右耻赁偏亮浓撂孵计算机算法贪心算法计算机算法贪心算法,6,如果能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,就可以避免大量重复计算,从而得到多项式时间算法。,算法总体思想,T(n),囱蒲训植撒谷暴扳道虏悄香滔舟亮柒初靴旷朽契庇喇陈斤蜘住间舔狭豪凸计算机算法贪心算法计算机算法贪心算法,7,动态规划基本步骤,找出最优解的性质,并刻划其结构特征。 递归地定义最优值。 以自底向上的方式计算出最优值。 根据计算最优值时得到的信息,构造最优解。,皆棘蝴级澎柔靖蛔累悔课泰谦佳此蓝堕蛤喧趁匿挪扣咎频哲爆茵讯女伸穿计算机算法

4、贪心算法计算机算法贪心算法,8,完全加括号的矩阵连乘积可递归地定义为:设有四个矩阵 ,它们的维数分别是:总共有五中完全加括号的方式,(1)单个矩阵是完全加括号的; (2)矩阵连乘积 是完全加括号的,则 可表示为2个完全加括号的矩阵连乘积 和 的乘积并加括号,即,16000, 10500, 36000, 87500, 34500,完全加括号的矩阵连乘积,颗抛鄙嗡坯赤昭厅婉蒸碾筏月柏砾啼翘玄酬喇挛船辈钥胖离叶秦赶殊辣弊计算机算法贪心算法计算机算法贪心算法,9,矩阵连乘问题,给定n个矩阵 , 其中 与 是可乘的, 。考察这n个矩阵的连乘积 由于矩阵乘法满足结合律,所以计算矩阵的连乘可以有许多不同的计

5、算次序。这种计算次序可以用加括号的方式来确定。 若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积,改惩蹄寅领粒甩板菱柴砒颐拥馅村突卵赞瓷软怂茎险辕鸣逛幢焙你俏怨雁计算机算法贪心算法计算机算法贪心算法,10,矩阵连乘问题,给定n个矩阵A1,A2,An,其中Ai与Ai+1是可乘的,i=1,2,n-1。如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。,穷举法:列举出所有可能的计算次序,并计算出每一种计算次序相应需要的数乘次数,从中找出一种数乘次数最少的计算次序。,算法复杂度分析: 对于n个矩

6、阵的连乘积,设其不同的计算次序为P(n)。 由于每种加括号方式都可以分解为两个子矩阵的加括号问题:(A1.Ak)(Ak+1An)可以得到关于P(n)的递推式如下:,朝瓢德娶卜订琼强架幢芒痘幂灯循由容州租碍级沈苞算岛都颠功缀讼沟儿计算机算法贪心算法计算机算法贪心算法,11,矩阵连乘问题,穷举法 动态规划,将矩阵连乘积 简记为Ai:j ,这里ij,考察计算Ai:j的最优计算次序。设这个计算次序在矩阵 Ak和Ak+1之间将矩阵链断开,ikj,则其相应完全 加括号方式为,计算量:Ai:k的计算量加上Ak+1:j的计算量,再加上 Ai:k和Ak+1:j相乘的计算量,藉鸣样阶三腋窘貉秩褐仲机丽殊惭垣测募苗

7、页召石旋肃卑彭召足烈砒惠莫计算机算法贪心算法计算机算法贪心算法,12,特征:计算Ai:j的最优次序所包含的计算矩阵子链 Ai:k和Ak+1:j的次序也是最优的。 矩阵连乘计算次序问题的最优解包含着其子问题的最优解。这种性质称为最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法求解的显著特征。,分析最优解的结构,虫愤宵背浓陕窄等庚鼠蜘端涕漾根约仓钵希应盗候舟薪揩探州叠清帧穿字计算机算法贪心算法计算机算法贪心算法,13,建立递归关系,设计算Ai:j,1ijn,所需要的最少数乘次数mi,j,则原问题的最优值为m1,n 当i=j时,Ai:j=Ai,因此,mi,i=0,i=1,2,n 当ij时

8、,可以递归地定义mi,j为:,这里 的维数为,的位置只有 种可能,堵宦钵炔弛蛙薪茅钟篇岗忌璃莽臭榨具腾剿估糜嘎有痘柜弊鹏吭瘪轧圃闯计算机算法贪心算法计算机算法贪心算法,14,计算最优值,对于1ijn不同的有序对(i,j)对应于不同的子问题。因此,不同子问题的个数最多只有由此可见,在递归计算时,许多子问题被重复计算多次。这也是该问题可用动态规划算法求解的又一显著特征。 用动态规划算法解此问题,可依据其递归式以自底向上的方式进行计算。在计算过程中,保存已解决的子问题答案。每个子问题只计算一次,而在后面需要时只要简单查一下,从而避免大量的重复计算,最终得到多项式时间的算法,算函求涡欢柔葵霹哟训蚜耐化

9、俏鸥矽溃什耿寺从痪烩锭箭趁王嚼缝沂己驻计算机算法贪心算法计算机算法贪心算法,15,用动态规划法求最优解,void MatrixChain(int *p,int n,int *m,int *s) for (int i = 1; i = n; i+) mii = 0;for (int r = 2; r = n; r+)for (int i = 1; i = n - r+1; i+) int j=i+r-1;mij = mi+1j+ pi-1*pi*pj;sij = i;for (int k = i+1; k j; k+) int t = mik + mk+1j + pi-1*pk*pj;if (t

10、 mij) mij = t; sij = k; ,逻耗涣腆盘淳渤纷靶对镀敢肆灼捣诧品掩灵宵捍压悉湖燃岭瓷莹骆塌炯突计算机算法贪心算法计算机算法贪心算法,16,算法复杂度分析: 算法matrixChain的主要计算量取决于算法中对r,i和k的3重循环。循环体内的计算量为O(1),而3重循环的总次数为O(n3)。因此算法的计算时间上界为O(n3)。算法所占用的空间显然为O(n2)。,用动态规划法求最优解,北秒吮案函妹都跨蝴伍簿雨跃荡柔背瘁疏涡且鸽翌舔挑咱弥婴佩汇幽膘韶计算机算法贪心算法计算机算法贪心算法,17,动态规划算法的基本要素,一、最优子结构,矩阵连乘计算次序问题的最优解包含着其子问题的最优

11、解。这种性质称为最优子结构性质。 在分析问题的最优子结构性质时,所用的方法具有普遍性:首先假设由问题的最优解导出的子问题的解不是最优的,然后再设法说明在这个假设下可构造出比原问题最优解更好的解,从而导致矛盾。 利用问题的最优子结构性质,以自底向上的方式递归地从子问题的最优解逐步构造出整个问题的最优解。最优子结构是问题能用动态规划算法求解的前提。,同一个问题可以有多种方式刻划它的最优子结构,有些表示方法的求解速度更快(空间占用小,问题的维度低),篮晤局抖筒胡弃蛙楚旭泄同捐夺愁三略蜒皇丧荡谗而南唉颐敏卯袍仑劳饿计算机算法贪心算法计算机算法贪心算法,18,动态规划算法的基本要素,二、重叠子问题,递归

12、算法求解问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。这种性质称为子问题的重叠性质。 动态规划算法,对每一个子问题只解一次,而后将其解保存在一个表格中,当再次需要解此子问题时,只是简单地用常数时间查看一下结果。 通常不同的子问题个数随问题的大小呈多项式增长。因此用动态规划算法只需要多项式时间,从而获得较高的解题效率。,羌芒吹杰捐藤疙稚哼刷址秘测综驻蛇帛津列筷谭板扼珍剩芥檄至恤涨贯式计算机算法贪心算法计算机算法贪心算法,19,动态规划算法的基本要素,三、备忘录方法,备忘录方法的控制结构与直接递归方法的控制结构相同,区别在于备忘录方法为每个解过的子问题建立了备忘录以备需要时查看

13、,避免了相同子问题的重复求解。,int LookupChain(int i,int j) if (mij 0) return mij;if (i = j) return 0;int u = LookupChain(i,i) + LookupChain(i+1,j) + pi-1*pi*pj;sij = i;for (int k = i+1; k j; k+) int t = LookupChain(i,k) + LookupChain(k+1,j) + pi-1*pk*pj;if (t u) u = t; sij = k;mij = u;return u; ,处钮毛足货间歌莱魏苞条喻服舱讫疲倾

14、全锦褂辟卖逊搐络墅蒜鹊粉蚁比芳计算机算法贪心算法计算机算法贪心算法,20,最长公共子序列,若给定序列X=x1,x2,xm,则另一序列Z=z1,z2,zk,是X的子序列是指存在一个严格递增下标序列i1,i2,ik使得对于所有j=1,2,k有:zj=xij。例如,序列Z=B,C,D,B是序列X=A,B,C,B,D,A,B的子序列,相应的递增下标序列为2,3,5,7。 给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。 给定2个序列X=x1,x2,xm和Y=y1,y2,yn,找出X和Y的最长公共子序列。,交敌毒荫蓖元笼锄遥稠截紧磁浙叉蜜辣耪蹿盈屿沾闲铣捧龋

15、矫昼辗黎慨屑计算机算法贪心算法计算机算法贪心算法,21,最长公共子序列的结构,设序列X=x1,x2,xm和Y=y1,y2,yn的最长公共子序列为Z=z1,z2,zk ,则 (1)若xm=yn,则zk=xm=yn,且zk-1是xm-1和yn-1的最长公共子序列。 (2)若xmyn且zkxm,则Z是xm-1和Y的最长公共子序列。 (3)若xmyn且zkyn,则Z是X和yn-1的最长公共子序列。,由此可见,2个序列的最长公共子序列包含了这2个序列的前缀的最长公共子序列。因此,最长公共子序列问题具有最优子结构性质。,坠斯烈压爹杂虱迟清动刺互鸽审脯午踪寡幸微猜优寥畴峨哆州缎踪陛欲薄计算机算法贪心算法计算

16、机算法贪心算法,22,子问题的递归结构,由最长公共子序列问题的最优子结构性质建立子问题最优值的递归关系。用cij记录序列和的最长公共子序列的长度。其中, Xi=x1,x2,xi;Yj=y1,y2,yj。当i=0或j=0时,空序列是Xi和Yj的最长公共子序列。故此时Cij=0。其它情况下,由最优子结构性质可建立递归关系如下:,繁牛灾惜织抽砌入孙糖知下落疟矛穿剪腹缨幼癌隧徘炸备咋管暴坎撇臂丘计算机算法贪心算法计算机算法贪心算法,23,计算最优值,由于在所考虑的子问题空间中,总共有(mn)个不同的子问题,因此,用动态规划算法自底向上地计算最优值能提高算法的效率。,void LCSLength(int

17、 m,int n,char *x,char *y,int *c,int *b) int i,j;for (i = 1; i =cij-1) cij=ci-1j; bij=2;else cij=cij-1; bij=3; ,构造最长公共子序列 void LCS(int i,int j,char *x,int *b) if (i =0 | j=0) return;if (bij= 1) LCS(i-1,j-1,x,b); coutxi; else if (bij= 2) LCS(i-1,j,x,b);else LCS(i,j-1,x,b); ,薄箩塘攒债荔利笑纤刀伐燕熏毅你排酿斡崭酷骄椽贡耸啃控寐

18、漱蛾炎贸捣计算机算法贪心算法计算机算法贪心算法,24,算法的改进,在算法lcsLength和lcs中,可进一步将数组b省去。事实上,数组元素cij的值仅由ci-1j-1,ci-1j和cij-1这3个数组元素的值所确定。对于给定的数组元素cij,可以不借助于数组b而仅借助于c本身在时间内确定cij的值是由ci-1j-1,ci-1j和cij-1中哪一个值所确定的。 如果只需要计算最长公共子序列的长度,则算法的空间需求可大大减少。事实上,在计算cij时,只用到数组c的第i行和第i-1行。因此,用2行的数组空间就可以计算出最长公共子序列的长度。进一步的分析还可将空间需求减至O(min(m,n)。,龋菊

19、饭匆菜域甄拎辽健贱援蛾堪离腐夫么鞋公框模蚂睬桨单椰蛰炊壳愈椿计算机算法贪心算法计算机算法贪心算法,25,凸多边形最优三角剖分,用多边形顶点的逆时针序列表示凸多边形,即P=v0,v1,vn-1表示具有n条边的凸多边形。 若vi与vj是多边形上不相邻的2个顶点,则线段vivj称为多边形的一条弦。弦将多边形分割成2个多边形vi,vi+1,vj和vj,vj+1,vi。 多边形的三角剖分是将多边形分割成互不相交的三角形的弦的集合T。 给定凸多边形P,以及定义在由多边形的边和弦组成的三角形上的权函数w。要求确定该凸多边形的三角剖分,使得即该三角剖分中诸三角形上权之和为最小。,规帅垢揖返仁留拭忘迅砂沪振匙田

20、故味湘待订活逸南付疲琐打扫萝灯都橇计算机算法贪心算法计算机算法贪心算法,26,三角剖分的结构及其相关问题,一个表达式的完全加括号方式相应于一棵完全二叉树,称为表达式的语法树。例如,完全加括号的矩阵连乘积(A1(A2A3)(A4(A5A6)所相应的语法树如图 (a)所示。 凸多边形v0,v1,vn-1的三角剖分也可以用语法树表示。例如,图 (b)中凸多边形的三角剖分可用图 (a)所示的语法树表示。 矩阵连乘积中的每个矩阵Ai对应于凸(n+1)边形中的一条边vi-1vi。三角剖分中的一条弦vivj,ij,对应于矩阵连乘积Ai+1:j。,庄舜带规墟猪卉派蜀扳犊紧氢晃议政寡事旋帝哮衬皂享斥徒乎愤央绕设

21、鹰计算机算法贪心算法计算机算法贪心算法,27,最优子结构性质,凸多边形的最优三角剖分问题有最优子结构性质。 事实上,若凸(n+1)边形P=v0,v1,vn-1的最优三角剖分T包含三角形v0vkvn,1kn-1,则T的权为3个部分权的和:三角形v0vkvn的权,子多边形v0,v1,vk和vk,vk+1,vn的权之和。可以断言,由T所确定的这2个子多边形的三角剖分也是最优的。因为若有v0,v1,vk或vk,vk+1,vn的更小权的三角剖分将导致T不是最优三角剖分的矛盾。,宣顷装冗推缘国株酝刊败炭浸模垮祝饱弃埂痒敞乞做馏蓄冒炬安构笼寿弧计算机算法贪心算法计算机算法贪心算法,28,最优三角剖分的递归结

22、构,定义tij,1ijn为凸子多边形vi-1,vi,vj的最优三角剖分所对应的权函数值,即其最优值。为方便起见,设退化的多边形vi-1,vi具有权值0。据此定义,要计算的凸(n+1)边形P的最优权值为t1n。 tij的值可以利用最优子结构性质递归地计算。当j-i1时,凸子多边形至少有3个顶点。由最优子结构性质,tij的值应为tik的值加上tk+1j的值,再加上三角形vi-1vkvj的权值,其中ikj-1。由于在计算时还不知道k的确切位置,而k的所有可能位置只有j-i个,因此可以在这j-i个位置中选出使tij值达到最小的位置。由此,tij可递归地定义为:,馏繁竣砌商产拆矫戚吩轨式蹦厅岂何现连瞎渺

23、褐碰失蹬炸馈挎污阁耽钾娟计算机算法贪心算法计算机算法贪心算法,29,多边形游戏,多边形游戏是一个单人玩的游戏,开始时有一个由n个顶点构成的多边形。每个顶点被赋予一个整数值,每条边被赋予一个运算符“+”或“*”。所有边依次用整数从1到n编号。 游戏第1步,将一条边删除。 随后n-1步按以下方式操作: (1)选择一条边E以及由E连接着的2个顶点V1和V2; (2)用一个新的顶点取代边E以及由E连接着的2个顶点V1和V2。将由顶点V1和V2的整数值通过边E上的运算得到的结果赋予新顶点。 最后,所有边都被删除,游戏结束。游戏的得分就是所剩顶点上的整数值。 问题:对于给定的多边形,计算最高得分。,坟段赖

24、墙镀秽虹甥估蔽凉偿蓄遇赐绵哥台暂奏矛瑶篓酵共吸膨进毛守监丰计算机算法贪心算法计算机算法贪心算法,30,最优子结构性质,在所给多边形中,从顶点i(1in)开始,长度为j(链中有j个顶点)的顺时针链p(i,j) 可表示为vi,opi+1,vi+j-1。 如果这条链的最后一次合并运算在opi+s处发生(1sj-1),则可在opi+s处将链分割为2个子链p(i,s)和p(i+s,j-s)。 设m1是对子链p(i,s)的任意一种合并方式得到的值,而a和b分别是在所有可能的合并中得到的最小值和最大值。m2是p(i+s,j-s)的任意一种合并方式得到的值,而c和d分别是在所有可能的合并中得到的最小值和最大值

25、。依此定义有am1b,cm2d (1)当opi+s=+时,显然有a+cmb+d (2)当opi+s=*时,有minac,ad,bc,bdmmaxac,ad,bc,bd 换句话说,主链的最大值和最小值可由子链的最大值和最小值得到。,淤乱敝壁究捉扩清氯锁桃盗狸请峙宽寨绸深吝弹鹊樱那霹歹赘茁芦垂追甥计算机算法贪心算法计算机算法贪心算法,31,图像压缩,图象的变位压缩存储格式将所给的象素点序列p1,p2,pn,0pi255分割成m个连续段S1,S2,Sm。第i个象素段Si中(1im),有li个象素,且该段中每个象素都只用bi位表示。设 则第i个象素段Si为设 ,则hibi8。因此需要用3位表示bi,如

26、果限制1li255,则需要用8位表示li。因此,第i个象素段所需的存储空间为li*bi+11位。按此格式存储象素序列p1,p2,pn,需要 位的存储空间。图象压缩问题要求确定象素序列p1,p2,pn的最优分段,使得依此分段所需的存储空间最少。每个分段的长度不超过256位。,毡抗租崔注显增屡罕孩幌羞峰垦贪梭霓烩筛离烟札律抡涉组棕耸句彻矩疹计算机算法贪心算法计算机算法贪心算法,32,图像压缩,设li,bi,是p1,p2,pn的最优分段。显而易见,l1,b1是p1,pl1的最优分段,且li,bi,是pl1+1,pn的最优分段。即图象压缩问题满足最优子结构性质。 设si,1in,是象素序列p1,pn的

27、最优分段所需的存储位数。由最优子结构性质易知:其中,算法复杂度分析: 由于算法compress中对k的循环次数不超这256,故对每一个确定的i,可在时间O(1)内完成的计算。因此整个算法所需的计算时间为O(n)。,仅惫砷危瓮奉秋风喉狱厄郁逐决动凉抹手看振作惭榴蜒爬仔厅侍爱魂里亿计算机算法贪心算法计算机算法贪心算法,33,电路布线,在一块电路板的上、下2端分别有n个接线柱。根据电路设计,要求用导线(i,(i)将上端接线柱与下端接线柱相连,如图所示。其中(i)是1,2,n的一个排列。导线(i,(i)称为该电路板上的第i条连线。对于任何1i(j)。 电路布线问题要确定将哪些连线安排在第一层上,使得该

28、层上有尽可能多的连线。换句话说,该问题要求确定导线集Nets=(i,(i),1in的最大不相交子集。,摈夹粉睛英撞忻莲纂款鄂朴敛聘辕廉此靡评减佐舍咨瘦吮献陇颅鹃场勃垫计算机算法贪心算法计算机算法贪心算法,34,记 。N(i,j)的最大不相交子集为MNS(i,j)。Size(i,j)=|MNS(i,j)|。 (1)当i=1时,(2)当i1时, 2.1 j(i)。此时, 。故在这种情况下,N(i,j)=N(i-1,j),从而Size(i,j)=Size(i-1,j)。 2.2 j(i),(i,(i)MNS(i,j) 。 则对任意(t,(t) MNS(i,j)有ti且(t)(i)。在这种情况下MNS

29、(i,j)-(i,(i)是N(i-1,(i)-1)的最大不相交子集。 2.3 若 ,则对任意(t,(t) MNS(i,j)有ti。从而 。因此,Size(i,j)Size(i-1,j)。另一方面 ,故又有Size(i,j)Size(i-1,j),从而Size(i,j)=Size(i-1,j)。,电路布线,(1)当i=1时(2)当i1时,秋沉喻七奈训候劈啮歧抉栓桌蛾嚎洋削疮揪伍痊阐贩酉公冒排惧怠疽侮莱计算机算法贪心算法计算机算法贪心算法,35,一、问题描述:多段图是一个有向无环图:,2)对于图上任意一条弧,总有:uVi, 而vVi+1(i=1, 2, , k-1)。弧上加“权”。“权”也称为弧的

30、成本(cost), 记为w(u, v)。,求:从s到t的一条最短路径。,多段图问题,1)n个顶点分为K2个不相交集合Vi(i=1,2,k)。其中V1和Vk都是只有一个顶点,分别称为源点s和汇点t。,椿和邵卒靖苹娄播歉积诽户而娄傻们岛松雀杭涉皋酶欢娠详霓窟撞尖恩诞计算机算法贪心算法计算机算法贪心算法,36,委挡拒亮坐舅狠泅史离零酉遥燎照点圈永穿摇渴弦贱览绕摈睦胎很祭筏郎计算机算法贪心算法计算机算法贪心算法,37,二、多段图问题求解分析,2. 枚举法:O(2n),3. 多步决策:每次从一个顶点集中确定一个顶点,作为从s到t路径上的一个顶点,三、最优性原理,1. 可以用单源点路径问题求解。时间复杂度

31、:O(n2),( An optimal sequence of decisions has the property that whatever the initial state and decision are, the remaining decisions must constitute an optimal decision sequece with regard to the state resulting from the first decision ),过程的最优决策序列具有如下性质:无论过程的初始状态和初始决策是什么,其余的决策都必须相对于初始决策所产生的状态,构成一个最优

32、决策序列。,演殉透现救例月拂全幸牡负今参嫌新甭诉吹锹任屁斟歹屡台贵咱琳阳肪项计算机算法贪心算法计算机算法贪心算法,38,四、动态规划法要点,1. 论证:最优性原理对问题成立。,2. 建立:从“小问题最优”到“大问题最优”的递推关系式。,3. 从小问题开始,实施上述递推关系式,求得大问题的最优解。,去种恃衅氖预虱桔捅迸焰疮力乖库督虽卖握锅蔷脐煮纸傅丁慌膀针第还绊计算机算法贪心算法计算机算法贪心算法,39,五、多段图问题的动态规划法求解,1. “最优性原理”对多段图问题成立。,2. 递推关系式,痕晋仕驯摘醒独氛带蒋虐敖藤贮磊删荤睦拧设君膊俏特戎穆镇猾钎功尿卫计算机算法贪心算法计算机算法贪心算法,4

33、0,3. 用“向前递推式”求从s到t的最短路径,孪谷旭矮恢险达谭悦狂椿可虑拖呜盒瑰通夯捂婆裁充拌件董悯赴挫智匆解计算机算法贪心算法计算机算法贪心算法,41,cost8 = minw8, 10+cost10, w8, 11+cost11= 7 (v10),cost1 = 16 (v2 /v3 ),从s到t的最短路径是:v1, v2, v7, v10, v12或者是:v1, v3, v6, v10, v12,蓟寄摧棕擒间涪界傈蛾镰翱恼痔铰娶材察扣枢坝篷认蜘麓爱菊罕湖釉恃欢计算机算法贪心算法计算机算法贪心算法,42,流水作业调度,n个作业1,2,n要在由2台机器M1和M2组成的流水线上完成加工。每个

34、作业加工的顺序都是先在M1上加工,然后在M2上加工。M1和M2加工作业i所需的时间分别为ai和bi。 流水作业调度问题要求确定这n个作业的最优加工顺序,使得从第一个作业在机器M1上开始加工,到最后一个作业在机器M2上加工完成所需的时间最少。,分析: 直观上,一个最优调度应使机器M1没有空闲时间,且机器M2的空闲时间最少。在一般情况下,机器M2上会有机器空闲和作业积压2种情况。 设全部作业的集合为N=1,2,n。SN是N的作业子集。在一般情况下,机器M1开始加工S中作业时,机器M2还在加工其它作业,要等时间t后才可利用。将这种情况下完成S中作业所需的最短时间记为T(S,t)。流水作业调度问题的最

35、优值为T(N,0)。,墅览文瘸惦蹈襄予眠女堰狡拍奥址邦腆级性恬幕扮含涨簇豹构峻娶掀靖辊计算机算法贪心算法计算机算法贪心算法,43,流水作业调度,设是所给n个流水作业的一个最优调度,它所需的加工时间为 a(1)+T。其中T是在机器M2的等待时间为b(1)时,安排作业(2),(n)所需的时间。 记S=N-(1),则有T=T(S,b(1)。,证明:事实上,由T的定义知TT(S,b(1)。若TT(S,b(1),设是作业集S在机器M2的等待时间为b(1)情况下的一个最优调度。则(1), (2), (n)是N的一个调度,且该调度所需的时间为a(1)+T(S,b(1)a(1)+T。这与是N的最优调度矛盾。故

36、TT(S,b(1)。从而T=T(S,b(1)。这就证明了流水作业调度问题具有最优子结构的性质。,由流水作业调度问题的最优子结构性质可知,,暇坯赁狰蔗烧韶瞪邻姑扶撬慕褥慰霉爆柞牵姿诗对伸兢勇骤膀舔台凯杯汾计算机算法贪心算法计算机算法贪心算法,44,Johnson不等式,对递归式的深入分析表明,算法可进一步得到简化。 设是作业集S在机器M2的等待时间为t时的任一最优调度。若(1)=i, (2)=j。则由动态规划递归式可得: T(S,t)=ai+T(S-i,bi+maxt-ai,0)=ai+aj+T(S-i,j,tij) 其中,,如果作业i和j满足minbi,ajminbj,ai,则称作业i和j满足

37、Johnson不等式。,该囊瘸亚设泰韦袖兆云惧共廓剐瑞烈赵焦伙类脑倒钝脆横匪戈刮纯葱掷想计算机算法贪心算法计算机算法贪心算法,45,流水作业调度的Johnson法则,交换作业i和作业j的加工顺序,得到作业集S的另一调度,它所需的加工时间为T(S,t)=ai+aj+T(S-i,j,tji) 其中, 当作业i和j满足Johnson不等式时,有由此可见当作业i和作业j不满足Johnson不等式时,交换它们的加工顺序后,不增加加工时间。对于流水作业调度问题,必存在最优调度 ,使得作业(i)和(i+1)满足Johnson不等式。进一步还可以证明,调度满足Johnson法则当且仅当对任意ij有由此可知,所

38、有满足Johnson法则的调度均为最优调度。,疾洞苏阔陡禹渠彪籽郭数籍或蝶眺滩卫整脉走酣畸允迎豢纳仇道摇燥浪糠计算机算法贪心算法计算机算法贪心算法,46,算法描述,流水作业调度问题的Johnson算法 (1)令 (2)将N1中作业依ai的非减序排序;将N2中作业依bi的非增序排序; (3)N1中作业接N2中作业构成满足Johnson法则的最优调度。,算法复杂度分析: 算法的主要计算时间花在对作业集的排序。因此,在最坏情况下算法所需的计算时间为O(nlogn)。所需的空间为O(n)。,裴惫钵僵朴酥肆柜注势阑戴肛乘桩混甩赖扣捕浊以墩室桅哑淆压乾蔡最城计算机算法贪心算法计算机算法贪心算法,47,0-

39、1背包问题,给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?0-1背包问题是一个特殊的整数规划问题。,贵榆眨旅账傈勒屋罩锁减颁腐珊瀑含剿换刷晴俏吕岂眩救那钒戳野篱砍狭计算机算法贪心算法计算机算法贪心算法,48,0-1背包问题,设所给0-1背包问题的子问题,的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i,i+1,n时0-1背包问题的最优值。由0-1背包问题的最优子结构性质,可以建立计算m(i,j)的递归式如下。,算法复杂度分析: 从m(i,j)的递归式容易看出,算法需要O(nc)计算时间。当

40、背包容量c很大时,算法需要的计算时间较多。例如,当c2n时,算法需要(n2n)计算时间。,芳甥和著佐巾玲德假赢仇瞻晋姥琼酒双祷阁昔仑粮鸭颖唉码晦郝就删彩蒋计算机算法贪心算法计算机算法贪心算法,49,算法改进,由m(i,j)的递归式容易证明,在一般情况下,对每一个确定的i(1in),函数m(i,j)是关于变量j的阶梯状单调不减函数。跳跃点是这一类函数的描述特征。在一般情况下,函数m(i,j)由其全部跳跃点唯一确定。如图所示。,对每一个确定的i(1in),用一个表pi存储函数m(i,j)的全部跳跃点。表pi可依计算m(i,j)的递归式递归地由表pi+1计算,初始时pn+1=(0,0)。,蛆道膨瞪选

41、讼泪渐哺挠菊长谊真核癣汉属墩莎预占骤者底红贞校雪描掌杜计算机算法贪心算法计算机算法贪心算法,50,一个例子,n=3,c=6,w=4,3,2,v=5,2,1。,多巩笆有攘染软博压青罚惩螺钵豺秆艺醇烹赦绥坟断溃芭脏邢樊晴伺宽伶计算机算法贪心算法计算机算法贪心算法,51,函数m(i,j)是由函数m(i+1,j)与函数m(i+1,j-wi)+vi作max运算得到的。因此,函数m(i,j)的全部跳跃点包含于函数m(i+1,j)的跳跃点集pi+1与函数m(i+1,j-wi)+vi的跳跃点集qi+1的并集中。易知,(s,t)qi+1当且仅当wisc且(s-wi,t-vi)pi+1。因此,容易由pi+1确定跳

42、跃点集qi+1如下qi+1=pi+1(wi,vi)=(j+wi,m(i,j)+vi)|(j,m(i,j)pi+1 另一方面,设(a,b)和(c,d)是pi+1qi+1中的2个跳跃点,则当ca且db时,(c,d)受控于(a,b),从而(c,d)不是pi中的跳跃点。除受控跳跃点外,pi+1qi+1中的其它跳跃点均为pi中的跳跃点。 由此可见,在递归地由表pi+1计算表pi时,可先由pi+1计算出qi+1,然后合并表pi+1和表qi+1,并清除其中的受控跳跃点得到表pi。,算法改进,传力岁痞撒兹盐见梗侧衷棠军涕垂惑妓楼猜椒疡蝉逆吉龄睹舞献捆虽畴彰计算机算法贪心算法计算机算法贪心算法,52,一个例子,

43、n=5,c=10,w=2,2,6,5,4,v=6,3,5,4,6。,初始时p6=(0,0),(w5,v5)=(4,6)。因此,q6=p6(w5,v5)=(4,6)。 p5=(0,0),(4,6)。 q5=p5(w4,v4)=(5,4),(9,10)。从跳跃点集p5与q5的并集p5q5=(0,0),(4,6),(5,4),(9,10)中看到跳跃点(5,4)受控于跳跃点(4,6)。将受控跳跃点(5,4)清除后,得到p4=(0,0),(4,6),(9,10) q4=p4(6,5)=(6,5),(10,11) p3=(0,0),(4,6),(9,10),(10,11) q3=p3(2,3)=(2,3)

44、,(6,9) p2=(0,0),(2,3),(4,6),(6,9),(9,10),(10,11) q2=p2(2,6)=(2,6),(4,9),(6,12),(8,15) p1=(0,0),(2,6),(4,9),(6,12),(8,15) p1的最后的那个跳跃点(8,15)给出所求的最优值为m(1,c)=15。,泉的肮则隧要庙役寿脚厨凑属绳授钉葬黄萨潮屑所葬池乏参抡亨子汰撒法计算机算法贪心算法计算机算法贪心算法,53,上述算法的主要计算量在于计算跳跃点集pi(1in)。由于qi+1=pi+1(wi,vi),故计算qi+1需要O(|pi+1|)计算时间。合并pi+1和qi+1并清除受控跳跃点也

45、需要O(|pi+1|)计算时间。从跳跃点集pi的定义可以看出,pi中的跳跃点相应于xi,xn的0/1赋值。因此,pi中跳跃点个数不超过2n-i+1。由此可见,算法计算跳跃点集pi所花费的计算时间为 从而,改进后算法的计算时间复杂性为O(2n)。当所给物品的重量wi(1in)是整数时,|pi|c+1,(1in)。在这种情况下,改进后算法的计算时间复杂性为O(minnc,2n)。,算法复杂度分析,薯讽耐版陌庆贡数笑汹凄橇磊沥跟砌弛哗煤蹭笨只咨领枣颊池凝癸亏秉闹计算机算法贪心算法计算机算法贪心算法,54,最优二叉搜索树,二叉搜索树,(1)若它的左子树不空,则左子树上所有节点的值均小于它的根节点的值;

46、 (2)若它的右子树不空,则右子树上所有节点的值均大于它的根节点的值; (3 它的左、右子树也分别为二叉排序树,在随机的情况下,二叉查找树的平均查找长度 和 是等数量级的,揉梯又迷转贫探菌钝赐伞行辰肄爷失衅司碗粤归掐奔壶率腿谣召掖曝田曙计算机算法贪心算法计算机算法贪心算法,55,查找成功与不成功的概率二查找树的期望耗费有 个节点的二叉树的个数为: 穷举搜索法的时间复杂度为指数级,二叉查找树的期望耗费,料辆圈改涕柜令渺兵飞栏歌篓乱咕扇村朴饮既该台效钉顽脐史敛秽延轻灯计算机算法贪心算法计算机算法贪心算法,56,二叉查找树的期望耗费示例,淀毋葫炸辱弗怒掌匀舷务悟荒翰撮杏菇铡继坞形遏迸僧退杀虞苫滨吏绥竹计算机算法贪心算法计算机算法贪心算法,57,最优二叉搜索树,最优二叉搜索树Tij的平均路长为pij,则所求的最优值为p1,n。由最优二叉搜索树问题的最优子结构性质可建立计算pij的递归式如下记wi,jpi,j为m(i,j),则m(1,n)=w1,np1,n=p1,n为所求的最优值。计算m(i,j)的递归式为注意到,可以得到O(n2)的算法,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报