收藏 分享(赏)

判断函数单调性的.ppt

上传人:hyngb9260 文档编号:7018488 上传时间:2019-05-01 格式:PPT 页数:21 大小:275KB
下载 相关 举报
判断函数单调性的.ppt_第1页
第1页 / 共21页
判断函数单调性的.ppt_第2页
第2页 / 共21页
判断函数单调性的.ppt_第3页
第3页 / 共21页
判断函数单调性的.ppt_第4页
第4页 / 共21页
判断函数单调性的.ppt_第5页
第5页 / 共21页
点击查看更多>>
资源描述

1、判断函数单调性的 常见方法,姓名: 学号: 专业:与应数学用数学 指导老师:,参考文献21 5 致谢20 4总结19 3.5导数法17 3.4分析法15 3.3图像法13 3.2直接法11 3.1定义法9 3判断函数单调性的常见方法8 2.6单调性在中小学数学教学中的地位和作用7 2.5从数学思想方法的培养来看6 2.4从逻辑推理能力的培养来看6 2.3从学科学角度来看6 2.2单调性本身的重要性5 2.1由函数的重要地位所决定5 2函数单调性在数学整体中的重要地位5 1.引言4 Key words3 Abstract3 关键词3 内容摘要3 目录,内容摘要: 本文分析了函数单调性在中学数学中

2、的重要地位,在此基础上,总结了判定函数单调性的几种重要方法,如:有定义法、图象法、分析法、导数法等.并通过几个例题说明了这几种方法的适用范围.关键词: 函数 单调性 方法Abstract: This paper analyzes the monotony of function in the middle school mathematics important position, on this foundation, summed up the decision function monotonicity methods, such as: definition, image method

3、, analysis method, derivative method. And through several examples illustrate these methods applicable scope.Keywords: Function Monotonicity Method,1引言函数是高中数学的中心内容,几乎渗透到高中数学的每一个角落,它不仅是一条重要的数学概念,而且是一种重要的数学思想.而函数的单调性则是函数的一条重要性质,是历年高考重点考查的内容,也是解决数学问题的有力工具.如果能充分发掘问题中的隐含条件,把问题化归到单调函数模型上去,合理巧妙地运用函数单调性,定会给

4、你带来快捷的解题思路,同时也加强了对构造法解决问题的数学思维的培养,对完善认知结构方面也是大有裨益的.,2函数单调性在数学整体中的重要地位2.1由函数的重要地位所决定函数是描述客观世界变化规律的重要模型,现实世界中的许多变化规律都可以用函数模型刻画;函数在数学以及各领域中有着极重要的地位和作用,不仅贯穿于高中整个代数体系,还是学生进一步学习高等数学的基础.单调性作为函数最重要的性质之一,其重要性和地位不言而喻.2.2单调性本身的重要性学生学习了函数概念后,首先就对函数单调性进行了研究,研究单调性的方法可迁移、类比到研究函数的奇偶性、周期性、对称性等;研究单调性可从多角度、多层次进行:对单调性概

5、念的认识经历了直观感知、自然语言描述、数学符号语言描述三个过程,在此过程中,学生可以充分感受数学知识(单调性概念)的发生发展过程,这是一个引导学生认识数学、感受数学、理解数学基本脉络的很好载体.,2.3从学科角度来看函数的单调性是学习不等式、数列、极限、导数等其它数学知识的基础,是解决数学问题的常用工具.2.4从逻辑推理能培力的养来看函数的单调性是学生学习函数概念后第一个用数学符号语言来刻画的概念,概念中首次出现了全称量词“任意”,这也是学生理解函数单调性的关键和难点,突破该关键的过程正是一个由特殊到一般的过渡,从中培养了学生的归纳推理能力,更重要的是培养了学生逻辑推理能力.2.5从数学思想方

6、法的培养来看函数与曲线是贯穿中学数学的一对孪生姐妹,函数图像发现函数性质的直观载体.学生探索、研究函数的单调性,一直以函数图像为依托.所以说单调性的学习是渗透数形结合思想的重要素材.,2.6单调性在数学教学中的地位和作用从知识本身来讲.学生对于函数单调性的学习共分为四个阶段,第一阶段是在小学的直观感知;第二阶段是在初中学习了一次函数、二次函数、反比例函数图象的基础上对增减性有初步的感性认识;第三阶段是在高一用数学符号语言定义函数性质,学习并应用函数单调性的严格定义,从数和形两个方面加深对概念的理解;第四阶段则是选修系列的导数及其应用的学习,只是单调性学习的进一步深化和提高.可以说,高一所学单调

7、性既是小学、初中学习的延续和深化,又为后续高三和大学的学习奠定了基础,可以说起着“承前启后”的重要作用。,3判断函数单调性的常见方法函数单调性的定义:一般的,设函数的定义域为y=f(x), ,如对于区间内任意两个值 , (1)当 时,都有 ,那么就说y=f(x)在区间I上是单调增函数,称为函数的单调增区间;(2)当 时,都有 ,那么就说y=(x)在区间I上是单调减函数,称为函数的单调减区间.,3.1定义法用定义域判断函数单调性的步骤: 取值:在函数定义域的某一子区间内任取两个不等变量 ,可设 ; 作差(或商)变形:作差 ,并通过因式分解、配方、有理化等方法向有利于判断差的符号的方向变形; 定号

8、:确定差 的符号; 判断:根据函数单调性定义进行判断并得出结论.,例1:已知函数 ,判断在(-,+)上的单调性并证明. 解:任取 、 (-,+), ,则: 、 (-,+), , , 故 ,即f(x)在(-,+)上单调递增,3.2直接法(一次函数、二次函数、反比例函 数的单调可直接说出) 函数y=-f(x)的单调性相反. 函数y=f(x)恒为正或恒为负时, 函数y=f(x)的单调性相反. 在公共区间内,增函数+增函数=增函数,减函数+减函数=减函数.,例2:判断函数 在(0,+)内的单调性解:设 , , 在(0,+)上单调减, 在(0,+)上单调减,又根据函数单调性的直接法得:在(0,+)内单调

9、减,3.3图像法在使用图像法时的说明:首先求出函数的定义域单调区间是定义域的子集定义 、 的任意性自变量与函数值同大或同小单调增函数自变量与函数相对单调减函数,例3:判断函数 的单调性?解:首先判断 的定义域,然后画出函数的图像如右图:根据图像我们很容易判断函数 在 单调增;在 单调减.,3.4分析法对于复合函数单调性判断一般地有:,例4:判断 的单调性解:令 , 在(0,+ )单调减,在(-,0)单调增,在(-,+ ) 单调减 在(0,+ )单调增,在(-,0)单调减.(注:这种方法概括为“同减异增”),3.5导数法利用导函数的符号判别函数的单调性.设函数 在某个区间内有导数,如果在这个区间

10、内有 ,那么为这个区间的增函数;如果在这个区间内有 ,那么为这个区间的减函数.,例5:确定函数 在哪个区间内是增函数,哪个区间内是减函数?解:令 解得: .当 x 时, ,f(x)是增函数.令 解得: .当 x 时, ,f(x)是减函数.,4 总结函数单调性是高中数学的重要内容,通过研究函数的单调性不仅可以揭示函数值的变化特性,本文通过对几种常用的判别函数单调性的方法进行阐述,希望能增强运用函数知识解题的意识.利用上述的方法可以使我们的解题更简单明了,也是我们的增加了我们学习的乐趣.,5 致谢如果说官是忙出来的,那么学问一定是闲出来的,这种闲,不是无所事事的闲,而是趁着在学校这块还算净土的地方

11、,离开热闹、离开功利,离开一切泛政治化的慷慨激昂,走一条寂寞而幽深的道路,把整体意义上的人文取向、文明脉络、艺术哲学、生命顿悟,比较完整的补回来的闲;这种闲,没有外力逼迫,全靠内心把持.所以研究生期间,我“躲进小楼成一统”,喜欢自由的随着性子安排时间.在我看来,这么纯粹的时间,也许毕业后一辈子都不会再有了,为什么不洒脱飘逸一点呢?在什么阶段就努力做好这个阶段应该做的事情,能静下心来翻几本书也许受益终生.魅力与人格、思维高度与胸怀眼界,需要在学生时代就开始慢慢积累与沉淀.特色永远是一个人的生命,循规蹈矩必然导致无为和平庸.这一点上,我要特别感谢我得指导老师袁小平老师 ,是他给了我最自由的发挥空间,也是他,给了我最充分的提升平台.,参考文献1 华东师范大学数学系 数学分析 高等教育出版社(第二版)上册2001.(10)2 中华人民共和国教育部定制.普通高中数学课程标准(实验)M.人民教育出版.2003.(12)3 教育部基础教育司组织编.全日制义务教育数学课程标准解读(实验稿)M.北京:北京师范入学出版社.2002.4(10)4 庾国庆.高中数学巧思妙解专题训练M.湖南教育出版社,1998.(163)5 郭勇军.浅谈函数的单调性问题J中学数理化(教与学).2010年02期(45)6 周培红.关于函数单调性问题的教学J福建中学数学.2010年02期(23),

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报