收藏 分享(赏)

有理数的意义.doc

上传人:kpmy5893 文档编号:6529249 上传时间:2019-04-15 格式:DOC 页数:6 大小:123KB
下载 相关 举报
有理数的意义.doc_第1页
第1页 / 共6页
有理数的意义.doc_第2页
第2页 / 共6页
有理数的意义.doc_第3页
第3页 / 共6页
有理数的意义.doc_第4页
第4页 / 共6页
有理数的意义.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、第二章 才 有理数一、有理数的意义21 正数和负数一、知识点1、像 5; 8; 2.4; ;等大于 0 的数叫正数。 像1; 5.2; ;7; 等在正数前面加上“”号的数叫负数。312、0 既不是正数,也不是负数。3、 正整数整数 0负整数有理数 零正分数分数 负分数正整数正有理数正分数有理数 零 负整数负有理数负分数负整数和零也叫非正整数;正数中含有正有理数;但正数不一定都是有理数;如 是正数,但不是有理数,当然也就不是分数。区分正数和整数的概念。二、例题:例 1、 把下列各数填在相应的集合中:5;2;0.3; ;0; ;5.57;1 ;102;78;10 4。417261属于正数集合的有:

2、_属于整数集合的有:_属于分数集合的有:_属于负数集合的有:_属于正整数集合的有:_属于非正整数集合的有:_属于有理数集合的有:_既不是正数,又不是负数的有:_例 2、 填空:1、如果温度上升 6记作 6,那么下降 3记作_。2、如果向南走 8 米,记作8 米,那么向北走 15 米应记作_;那么向北走6 米表示向_走_米。自然数(也叫非负整数)非负有理数有限小数和无限循环小数是分数,如:3.14 是分数非正整数3、最小的正整数是_;最大的负整数是_;最小的非负整数是_;最大的非正整数是_。2、2 数轴一、知识点:1、规定了原点、正方向和单位长度的直线叫做数轴。2、画数轴时,要注意数轴的三要素缺

3、一不可。3、数轴的作用:(1)是能形象地表示数,所有的有理数都可在数轴上用点来表示,但数轴上的点所表示的不一定是有理数;如:。 (2)通过数轴从图形上直观的解释相反数;帮助理解绝对值的意义,还可以比较有理数的大小。4、有理数的大小比较:在数轴上表示的两个数,右边的数总比左边的数大。得到:正数大于 0;0 大于负数;正数大于负数。二、例题:例 1、填空:1、比4 大的负整数有_;2、大于3.5 而不大于 3 的整数有_个;3、比较下列数的大小(用“” “” “”填空)5_0 ; _ ; 1111_0.001546 _ ;0.67_ ;_3.1421332例 2、如果 a0,1b0。试比较 a、a

4、b、ab 2的大小。例 3、 在数轴上把数 4.5、2.5、0、|3|、(1) 、|2|表示出来,并用“”号把它们连接起来。2、3 相反数一、知识点1、像 2 和2,1.5 和1.5 这样只有符号不同的两个数,那么其中一个就是另一个的相反数。一般地,数 a 的相反数是a。2、规定:0 的相反数是 0。3、在数轴上,互为相反数的两个数位于原点的两边,并到原点的距离相等4、多重符号的化简:二、例题:例 1、填空:1、简化(1) ;+(5.2)=_;(2) (+5) =_(3)(+2.7)=_;(4)|(2.3)|=_2、_的相反数是它本身。_的倒数等于它本身。3、如果x=7,那么 x=_。4、如果

5、 a 是负数,那么a_0;如果a 是负数,那么 a_0例 2、数 a、b 在数轴上表示的点如图,比较 a、b、a、b 的大小0b a2、4 绝对值一、知识点1、一个数的绝对值就是在数轴上表示数 a 的点与原点的距离,数 a 的绝对值记作|a|.2、绝对值的意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是 0。3、去绝对值符号,要先考虑绝对值中的数的正负性。二、例题:例 1、 填空:1、已知|a|=2,则 a=_;如果|x|=5,则 x=_。2、如果 a0 ,则|2a|=_;如果 a0,则|2a|=_。3、_的绝对值等于它本身。4、绝对值不大于 3 的整数有_5、|x

6、|=x;则 x 是_ 数。例 2、 分类讨论 的值的情况;a|例 3、 有理数 a、b、c 在数轴上的位置如图所示,化简|c-b|+|a-c|-|b-c|例 4、 已知:a 与 b 互为相反数, c 与 d 互为倒数, m 的绝对值为 2,求代数式 cd+|m|的值。2|m二、有理数的运算一、知识点2、5 有理数的加法1、有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。 (2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;(3)互为相反数的两数相加得 0;(4)一个数和0 相加,仍得这个数。2、加法交换律:a+b=b+a3、加法结合

7、律:(a+b)+c=a+(b+c)4、运算时要注意:(1)结果的符号;(2)区分结果的绝对值是把两数的绝对值相加还是相减。2、6 有理数的减法c 0 b a1、有理数的减法法则:减去一个数,等于加上这个数的相反数,即 a-b=a+(-b)。2、在有理数的减法运算未转化为有理数的加法运算时,被减数与减数的位置不能交换。对减法来讲,没有交换律。3、在有理数的减法中,当被减数和减数都是正数,而且被减数大于减数时,即为小学学过的算术减法。4、一个数减去 0 时等于这个数,但 0 减去一个数时,要按减法法则,写成加上这个数的相反数。2、7 有理数的加减混合运算1、一个式子中,有加法也有减法,根据有理数的

8、减法法则,把减法都转化为加法,式子就成为几个正数或负数的和。几个正数和负数的和,有时也叫做代数和。2、 “” 、 “” 、 “”、 “”(加减乘除)叫做运算符号,而“” (正) 、“” (负)又叫做性质符号。3、代数和里因为所有的运算都是加法,所以通常把加号省略不写,因此有理数a+bc 有两种读法:(1) “+”“”当作性质符号,读作“a、b、 c 的和” (2) “+”“” 号当作运算符号,读作“a 加b 减 c”。4、有理数的和可以大于任何一个加数,也可以小于任何一个加数,和可能是正数,也可能是负数或 0。2、8 有理数的乘法1、理数的乘法法则:两数相乘,同号得正、异号得负,并把绝对值相乘

9、,任何数同 0 相乘,都得 0。2、几个不等于 0 的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。3、几个数相乘,有一个因数为 0,积就为 0。4、乘法的交换律:ab=ba5、乘法的结合律:(ab ) c=a(bc)6、乘法的分配律:a(b+c)=ab+ac2、9 有理数的除法1、乘积是 1 的两数互为倒数,即 a =1(a0) ,也就是说,a(a 0)的1倒数是 。a2、有理数的除法法则:除以一个数等于乘以这个数的倒数,即 ab=a,注意 0 不能作除数。b13、 有理数的除法有与乘法相类似的法则:两数相除,同号得正,异号得负,并把绝对值相除,

10、0 除以任何一个不等于 0 的数都得 0。2、10 有理数的乘方1、一般地,有几个相同的因数 a 相乘,即 aaaa 记作 an,这种求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂,在 an中,a 叫做底数, n 叫做指数, an 读作“a 的 n 次方” ,或“a 的 n 次幂” 。2、根据乘方的意义,正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶数次幂是正数。3、把一个大于 10 的数记成 a10n 的形式,其中 a 是整数数位只有一位的数,这种记法叫做科学记数法。4、区分(2) 2 和2 2; 32 和 32; 32 和 23;232 和(23) 2; ( ) 2 和 。2、

11、11 有理数的混合运算1、对于有理数的混合运算,要正确掌握运算顺序:(1)有括号的要先算括号内的;(2)不同级的要先算乘方,再算乘除,最后算加减。 (3)同一级运算,要从左往右依次计算。2、能用运算律时,可不按上面的常规顺序,达到简化计算的目的。二、例题:例 1、 计算:1、0.6(0.07)( )+(+0.93 )(23)532、71 (8)1653、 ( ) 5213454、2 3 ( ) 2935、3 ( )+0.4( ) 1 ( 8) 6315254n 个6、 (12 )(+38 )+ ( +5 )(38 )(17 )(+38 )17321732732、12 近似数与有效数字一、知识点:1、一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。2、有效数字:从左边第一个非 0 的数字起,到精确到的数位止,所有的数字,都叫做这个数的有效数字。二、例题:例 1、 下列近似数各精确到哪一位?各有几个有效数字?38200 0.040 20.0500 40 万 3.14105例 2、 用四舍五入的方法,按括号的要求对下列各数取近似数。(1)1.5982(精确到 0.01)(2)0.03046(保留两个有效数字)(3)1598000(保留三个有效数字)

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报