1、高中数学选修 2-1,第二章 曲线与方程,第二课时,2.2.2 椭圆的简单几何性质,1.对于椭圆的原始方程,变形后得到 ,再变形为 .这个方程的几何意义如何?,新知探究,O,x,y,F,椭圆上的点M(x,y)到焦点F(c,0)的距离与它到直线 的距离之比等于离心率.,新知探究,若点F是定直线l外一定点,动点M到点F的距离与它到直线l的距离之比等于常数e(0e1),则点M的轨迹是椭圆.,新知探究,动画,直线 叫做椭圆相应于焦点F2(c,0)的准线,相应于焦点F1(c,0)的准线方程是,新知探究,椭圆 的准线方程是,新知探究,椭圆的一个焦点到它相应准线的距离是,新知探究,椭圆上一点M(x0,y0)
2、到左焦点F1(-c,0) 和右焦点F2(c,0)的距离分别是,|MF1|aex0,|MF2|aex0,新知探究,N,椭圆上的点到椭圆一个焦点的距离叫做椭圆的焦半径,上述结果就是椭圆的焦半径公式.,|MF1|aex0,|MF2|aex0,新知探究,椭圆 的焦半径公式是,|MF2|a-ey0,新知探究,|MF1|a+ey0,例1 若椭圆 上一点P到 椭圆左准线的距离为10,求点P到椭 圆右焦点的距离.,12,典型例题,例2 已知椭圆的两条准线方程为 y9,离心率为 ,求此椭圆的标准方程.,典型例题,例3 已知椭圆中心在原点,焦点在x轴上,点P为直线x3与椭圆的一个交点,若点P到椭圆两焦点的距离分别
3、是6.5和3.5,求椭圆的方程.,典型例题,x3,例4 已知点M与点F(4,0)的距离和它 到直线l: 的距离之比等于 , 求点M的轨迹方程.,典型例题,例5 设F1、F2是椭圆的左、右焦点,点M在椭圆上,且F1MF2=60,求F1MF2的面积.,学海第3课时22页探究活动方法相同,课堂小结,1.椭圆上的点到一个焦点的距离与它到相应准线的距离之比等于椭圆的离心率,这是椭圆的一个重要性质,通常将它称为椭圆的第二定义.,课堂小结,2.一个椭圆有两条准线,并与两个焦点相对应,两条准线在椭圆外部,且与长轴垂直,关于短轴对称.,3.椭圆焦半径公式的两种形式与焦点位置有关,可以记忆为“左加右减,下加上减”.,课堂小结,学海第4课时讲评,1、P49习题2.2A组:3,4,5,10. 2、学海第5课时,布置作业,