1、实践与探索,学习目标,掌握有关等积变形的实际问题。,设疑自探,同学们,根据本节课题结合学习目标,你有那些问题,请提出来。,掌握有关等积变形的实际问题。,答:这个长方形的长为18厘米;宽为12厘米。,解:(1)设这个长方形的长为 厘米,则宽为 厘米,据题意得,分析:,用一根长60厘米的铁丝围成一个长方形. (1)使长方形的宽是长的 ,那么这个长方形的长和宽分别是多少?,C=(长+宽)2,宽=长,问题1,(2)使长方形的宽比长少4厘米,求这个长方形的面积。,这个问题应该怎样解答?,1)若直接设长方形的面积为x能否直接列出方程?,2)求面积分几步?,不 能,先求长和宽,再求长方形的面积,用一根长60
2、厘米的铁丝围成一个长方形。 (3)比较(1)、(2)所得两个长方形面积的大小。还能围成面积更大的长方形吗?,(1),(2),解:(1)当长方形的长为18厘米,宽为12厘米时,长方形的面积=,(平方厘米),(2)当长方形的长为17厘米,宽为13厘米时,长方形的面积=,(厘米),所以(2)中的长方形面积比(1)中的长方形面积大.,长方形在周长一定的条件下,它的长与宽越接近,面积就越大;当长与宽相等,即成为正方形时,面积最大。,小试牛刀,完成p16练习1.2,?,提示:长方形的体积=长 宽高圆柱体体积=底面积高,P14.练习1: 一块长、宽、高分别为4厘米 、3 厘米 、2 厘米 的长方体橡皮泥,要
3、用它来捏一个底面半径为1.5厘米的圆柱,它的高是多少?(精确到0.1厘米,取3.14),等量关系:长方形的体积=圆柱体的体积,2,3,4,r=1.5,2.在一个底面直径5厘米、高18厘米的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径6厘米、高10厘米的圆柱形玻璃杯中,能否完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口距离.,18,5,6,10,所以玻璃杯不能完全装下.,解:圆柱形瓶内装水:,(厘米3 ),(厘米3 ),圆柱形玻璃杯可装水:,设:瓶内水面还有 厘米高,则,经检验符合题意 答:玻璃杯不能完全装下,瓶内水面还有3.6厘米高.,这节课你有什么收获?,学科班长对本节课做出总结: 1、这节课学了什么? 2、明星小组是哪一组? 明星个人?,知识的升华,基础训练,驶向胜利的彼岸,