收藏 分享(赏)

1.1_任意角和弧度制(1、2)教学设计.doc

上传人:wspkg9802 文档编号:6286285 上传时间:2019-04-04 格式:DOC 页数:11 大小:213.50KB
下载 相关 举报
1.1_任意角和弧度制(1、2)教学设计.doc_第1页
第1页 / 共11页
1.1_任意角和弧度制(1、2)教学设计.doc_第2页
第2页 / 共11页
1.1_任意角和弧度制(1、2)教学设计.doc_第3页
第3页 / 共11页
1.1_任意角和弧度制(1、2)教学设计.doc_第4页
第4页 / 共11页
1.1_任意角和弧度制(1、2)教学设计.doc_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、1.1 任意角和弧度制 第 1 页 共 11 页教学设计 1.1 任意角和弧度制设计教师 李生一、内容及其解析(一)内容:任意角,弧度制(二)解析: 本节内容是必修 4 第一章三角函数的第一节,本章在锐角三角函数的基础上,利用单位圆进一步研究任意角的三角函数,并用集合与对应的语言来刻画。这样,在研究三角函数之前,就由必要先将角的概念推广,并引入弧度制,从而建立角的集合与实数集之间的对应关系。利用集合直观有利于抽象概念的理解,教科书充分结合角和单位圆来引导学生了解任意角及弧度制概念,同时,还利用直角坐标系建立象限角的概念,使得任意角的讨论有了一个统一的载体,教学中,要特别注意利用单位圆,直角坐标

2、系等工具,引导学生用数形结合的思想方法来认识问题。弧度制是选自人民教育出版社,普通高中课程标准实验教科书数学版必修 4,第一章,第一小节第二课时内容,通过本节课的学习,学生将掌握角度的的另一种度量方式,为以后三角函数的引入做准备,因此本节概念课起着承上启下的作用。二、目标及其解析1结合实例体验角的概念推广的必要性;从运动的观点出发,进行角的概念推广,理解并掌握正角、负角、零角的定义;2能用集合和数学符号表示终边相同的角,即掌握所有与 角终边相同的角(包括 角)的表示方法;3能建立适当的坐标系来讨论任意角,理解象限角、坐标轴上的角的概念,并能用集合和数学符号表示;4在角的概念的推广的过程中,树立

3、运动变化观点,学会运用运动变化的观点认识事物;5通过正角、负角、零角与正数、负数、零的类比,培养学生的类比思维能力;6通过画图和判断角的象限,培养学生数形结合的思想方法;7.理解 1 弧度的角、弧度制的定义.能进行角度与弧度的换算.1.1 任意角和弧度制 第 2 页 共 11 页8.掌握用弧度制表示的弧长公式、扇形面积公式培养运用弧度制解决具体的问题的意识和能力三、问题诊断分析1学生在理解终边相同的角的表示方法上,会出现障碍,其原因是:刚刚将角的概念推广,还不是很适应终边相同的角的“周而复始”这个现象的本质;2学生在学习了教材例 1 后,做 P6 第 4 题,仍然感到困难,其原因是:当角为负角

4、时,在00360 0范围内找出终边相同的角,不知怎样计算,教学时应给学生介绍计算方法;3学生在学习了象限角的概念后,怎样用集合和数学符号语言正确地表示象限角(如:第一象限角),会出现障碍,其原因是:对第一象限角是有无数个区间构成,它们的终边是“周而复始”的现象的刻画还不了解,教师要进一步的解释 k3600的运用特点。4.本班级学生数学基础中等,学生平时学习需要在老师引导下才能较好的吸收新的知识5学生在学习本课以前,已经学习了角度的一种度量方式算,对角度有一定的认识四、教学支持条件分析 借助信息技术工具(如:几何画板),制作课件。【可参考人民教育出版社配套教师用书后的光盘中数学 4 的资源】1角

5、的推广在角的旋转量、旋转方向上给学生以动态的体会;2动态的表现角的终边旋转过程,有利于学生观察到角的变化与终边的位置关系,从特殊到一般,让学生发现并验证终边相同的角的表示方法。五、教学过程设计(一)教学基本流程探究新知新知应用创设情境布置作业巩固新知深入探究总结归纳小结(二)教学情景1问题引入问题 1:思考:你的手表慢了 5 分钟,你是怎样将它校准的?假如你的手表快了 1.25 小时,1.1 任意角和弧度制 第 3 页 共 11 页你应当如何将它校准?当时间校准以后,分针转了多少度?设计意图:提出问题,引发学生的认识冲突,说明角的概念扩展的必要性师生活动:引导学生分析:(学生:针对上述问题,

6、组织学生进行讨论。学生容易回答前面一个问题,但在回答后面一个问题是会发现问题,从而引起认知冲突。教师:取出一个钟表,实际操作我们发现,校正过程中分针需要顺时针或逆时针旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于 003600 之间,这正是我们这节课要研究的主要内容任意角.2探究新知,建立概念(1) 任意角概念的引入问题 2:过去我们是如何定义一个角的?角的范围是什么? 设计意图:回顾已有知识师生活动:教师:提出问题学生:回答问题问题 3:你能举出不在 的角的实例,并加以说明吗设计意图:结合具体的实例,感受角的概念推广的必要性师生活动:教师:展示课件角可以看成平面内一条射线绕着

7、端点从一个位置旋转到另一个位置所成的图形.学生:举例,再说明所举例的角为什么不在 003600。教师:提供教材中的几个例子。1.1 任意角和弧度制 第 4 页 共 11 页(2)概念讲解1.角的概念的推广:(1)定义:一条射线 OA 由原来的位置 OA,绕着它的端点 O 按一定方向旋转到另一位置 OB,就形成了角 。其中射线 OA 叫角 的始边,射线 OB 叫角 的终边,O 叫角 的顶点。2正角、负角、零角概念师:为了区别起见,我们把按逆时针方向旋转所形成的角叫正角,如图 2 中的角为正角,它等于 300与 7500;我们把按逆时针方向旋转所形成的角叫正角,那么同学们猜猜看,负角怎么规定呢?零

8、角呢?生:按顺时针方向旋转所形成的角叫负角,如果一条射线没有作任何旋转,我们称它形成了一个零角。师:如图 3,以 OA 为始边的角 =-150 0,=-660 0。特别地,当一条射线没有作任何旋转时,我们也认为这是形成了一个角,并把这个角称为零角。师:好,角的概念经过这样的推广之后,就应该包括正角、负角、零角。这里还有一点要说明:为了简单起见,在不引起混淆的前提下, “角 ”或“”可简记为 . 3.象限角师:在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念。同学们已经经过预习,请一位同学回答什么叫:象限角? 生:角的顶点与原点重合,角的始边与 x 轴的非负半轴重合。那

9、么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角。师:很好,从刚才这位同学的回答可以知道,她已经基本理解了“象限角”的概念了。下面请大家将书上象限角的定义划好,同时思考这么三个问题:1.定义中说:角的始边与 x 轴的非负半轴重合,如果改为与 x 轴的正半轴重合行不行,为什么?2.定义中有个小括号,内容是:除端点外,请问课本为什么要加这四个字?3.是不是任意角都可以归结为是象限角,为什么?处理:学生思考片刻后回答,教师适时予以纠正。答:1.不行,始边包括端点(原点) ; 2端点在原点上;3不是,一些特殊角终边可能落在坐标轴上;如果角的终边落在坐标轴上,就认为这个角不属于任一象限。师

10、:同学们一定要学会看数学书,特别是一些重要的概念、定理、性质要斟字酌句,每个字都要弄清楚,这样的预习才是有效果的。师生讨论:好,按照象限角定义,图中的 300,390 0,-330 0角,都是第一象限角;300 0,-600角,都是第四象限角;585 0角是第三象限角。师:很好,不过老师还有几事不明,要请教大家:(1)锐角是第一象限角吗?第一象限角是锐角吗?为什么?生:锐角是第一象限角,第一象限角不一定是锐角;师:(2)锐角就是小于 900的角吗?生:小于 900的角可能是零角或负角,故它不一定是锐角;师:(3)锐角就是 0090 0的角吗? 生:锐角:|0 090 0;0 090 0的角:|

11、0 090 0.1.1 任意角和弧度制 第 5 页 共 11 页4.终边相同的角的表示法师:观察下列角你有什么发现? 390 330 30 1470 1770生:终边重合.师:请同学们思考为什么?能否再举三个与 300角同终边的角?生:图中发现 3900,-330 0与 300相差 3600的整数倍,例如,390 0=3600+300,-330 0=-3600+300;与 300角同终边的角还有 7500,-690 0等。师:好!这位同学发现了两个同终边角的特征,即:终边相同的角相差 3600的整数倍。例如:750 0=23600+300;-690 0=-23600+300。那么除了这些角之外

12、,与 300角终边相同的角还有:33600+300 -33600+30043600+300 -43600+300, ,由此,我们可以用 S=|=k360 0+300,kZ来表示所有与 300角终边相同的角的集合。师:那好,对于任意一个角 ,与它终边相同的角的集合应如何表示?生:S=|=+k360 0,kZ,即任一与角 终边相同的角,都可以表示成角 与整数个周角的和。3.巩固新知,归纳关系问题 4:已知角的顶点与坐标系原点重合,始边落在 x 轴的非负半轴上,作出下列各角,并指出它们是哪个象限的角?(1)420 0; (2)-75 0; (3)855 0; (4)-510 0.答:(1)第一象限角

13、;(2)第四象限角;(3)第二象限角;(4)第三象限角设计意图:通过练习,掌握象限角的判断、终边相同的角的表示方法。师生活动:学生:回答,讨论交流, 补充教师:归纳总结,突出重点知, 解决学生的疑惑点。4.例题讲评例 1 设 ,第 一 象 限 的 角 锐 角 ,的 角 小 于 GF90oE,那么有( D ) A B C ( ) D 例 2 用集合表示:(1)各象限的角组成的集合 (2)终边落在 轴右侧的角的集合解:(1) 第一象限角:|k360 ok360 o+90o,kZ第二象限角:|k360 o+90o k360 o+180o,kZ第三象限角:|k360 o+180ok360 o+270o

14、,kZ第四象限角:|k360 o+270ok360 o+360o ,kZ1.1 任意角和弧度制 第 6 页 共 11 页(2)在 中, 轴右侧的角可记为 ,同样把该范围“旋转” 后,得 , ,故 轴右侧角的集合为 说明:一个角按顺、逆时针旋转 ( )后与原来角终边重合,同样一个“区间”内的角,按顺逆时针旋转 ( )角后,所得“区间”仍与原区间重叠例 3.写出终边直线在 y=x 上的角的集合 S,并把 S 中适合不等式-360 0 720 0的元素 写出来.设计意图:通过例题,进一步理解任意角、象限角和终边相同的角。师生活动:教师:分析、板书例 1。学生:自学例 2。教师:指出这两个集合求并集的

15、关键是把 2700 改写成 900+1800,然后重新组合。师生:共同完成例 3,注意 k 的正确取值是关键。教师:归纳总结,突出重点知, 解决学生的疑惑点。问题 5:度量角的制度是什么?1 度的角是怎么定义的?还有其它的度量角的制度吗? 设计意图:引导学生进入弧度制的研究.师生活动:教师问:度量角的制度是什么?学生答:角度制教师问:1 度的角是怎么定义的?能够准确回答这个问题的学生很少,通过教师的适当引导,学生有些恍然大悟。教师问:还有其它的度量角的制度吗?学生这时已经有些活跃起来,他们也急于了解这个课题。问题 6:在圆心角一定的情况下,圆心角所对的圆弧长与所在圆的半径的比值是定值吗?设计意

16、图:为了使得弧度制的层层深入学习,我还是把问题一个个呈现出来,让学生逐步认1.1 任意角和弧度制 第 7 页 共 11 页识弧度制。师生活动:教师问:在不同半径的圆中,如果圆心角的大小相等,那么它们所对的圆弧长与所在圆的半径之比是否相等?学生共同探究,发现问题,并共同解决问题。教师总结:在圆心角一定的情况下,圆心角所对的圆弧长与所在圆的半径的比值是定值。教师对于问题的总结要使得学生意识到:学习不能只是停留在简单的解决问题中要善于深入挖掘问题,对于问题的认识更加深刻。教师问:既然圆心角所对的圆弧长与所在圆的半径的比值是定值,那么可以用这个比值来衡量角的大小吗?问题呈现到这个时候,大部分学生已经发

17、现:可以用这个比值衡量角的大小。教师问:如何规定这个新制度下的“1”这个单位呢?问题的层层推进,思维活跃的同学已经禁不住回答这个问题:比值为 1 的情况下,可以规定为“1”这个单位。教师总结:给出 1 弧度和弧度制的严格定义。这时,学生已经意识到:弧度制产生的本源以及弧度制度量角的合理性。5. 新知应用与深化提出课题:弧度制另一种度量角的单位制 它的单位是 rad 读作弧度定义:长度等于半径长的弧所对的圆心角称为 1 弧度的角。如图:AOB=1rad AOC=2rad 周角=2rad 师生共同完成教材第 6 页表格,然后共同归纳总结:1正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是 0

18、2角 的弧度数的绝对值 ( 为弧长, 为半径)rlr3用角度制和弧度制来度量零角,单位不同,但数量相同(都是 0)用角度制和弧度制来度量任一非零角,单位不同,量数也不同。角度制与弧度制的换算抓住:360 =2rad 180 = rad 1 = radrad01745.8orC2rad1rad rl=2ro AAB1.1 任意角和弧度制 第 8 页 共 11 页185730.18rad6.例题讲解:例 1 把 化成弧度3067解: 21 radrad83216780367例 2 把 化成度rad53解: 180设计意图:让学生初步学会角度制和弧度制相互转化师生互动:1、学生说,教师板书,带领学生

19、思考问题,充分调动学生积极性2、常用角的角度制和弧度制的换算角度 30 45 60 90 120 135 150 180 210弧度角度 225 240 270 300 315 330 360弧度3、注意几点:a度数与弧度数的换算也可借助“计算器” 中学数学用表进行;b今后在具体运算时, “弧度”二字和单位符号“rad”可以省略 如:3表示 3rad sin 表示 rad 角的正弦c应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。任意角的集合 实数集 R例 3 利用弧度制证明扇形面积公式 其中 是扇形弧长, 是圆的半径。lS21l

20、R正角零角负角正实数零负实数1.1 任意角和弧度制 第 9 页 共 11 页证: 如图:圆心角为 1rad 的扇形面积为: 21R弧长为 的扇形圆心角为lradl lRS21比较这与扇形面积公式 要简单3602n扇例 4 直径为 20cm 的圆中,求下列各圆心所对的弧长 34165解: : cmr10 )(341cmrl : rad2(6580 )(6012cml例 5 如图,已知扇形 的周长是 6cm,该扇形AOB的中心角是 1 弧度,求该扇形的面积。解:设扇形的半径为 r,弧长为 ,则有l 扇形的面积2162lrl 2)(1cmrlS例 6 计算 4sin5.1tan解: 524sii57

21、89130.71.rad 2458tnt例 7 将下列各角化成 0 到 的角加上 的形式)(Zk 31931解: 6240451例 8 求图中公路弯道处弧 AB 的长 (精确到 1m)l图中长度单位为:m解: 360oRS loA BR=45601.1 任意角和弧度制 第 10 页 共 11 页 )(4715.34mRl 设计意图:加深学生对弧度制的理解,逐步习惯在具体应用中运用弧度制解决具体的问题,特别是弧长公式,扇形面积计算公式的理解和使用师生互动:为了让学生体会引进弧度制表示角的必要,采用了比较对照的方法,初步认识到弧度制表示角的简洁性。教师问:角度制下扇形的弧长公式和面积公式是什么?学

22、生答:(为角度制下圆心角的角度数)教师问:那么弧度制下扇形的弧长公式和面积公式又是什么呢?学生自行推导,遇到困难和问题,相互讨论。学生总结:(为弧度制下圆心角的弧度数)教师问:比较一下这两种制度下的公式,你们有什么体会?学生马上议论开来:弧度制下的公式简单,好记忆!“6. 总结归纳设计本课题的展开是“类比”导入,以“提问题”的形式,使得学生赋予想象力,增强学生学习的兴趣,提供学习新知的源动力。在这个学习过程中,学生充满疑问和好奇进入了本课题的探究。可见,恰当的“导入”为创造性学习迈出了第一步,也是学生思维品质提升的源泉,加强对学生创新思维品质的培养,从而促进学生创新能力的形成与发展。本课题的探

23、究中,主要以“问题链”的形式,引发学生的思考,运用 “运动”的观点思考问题,使得学生的学习不要僵化、一成不变。我在“问题链”的设计中,注意到:问题之间的有机衔接,问题的层层深入,以及教师提问学生的方式和时机。巧妙地设计问题,使得学生的思维赋予层次性、深刻性、创造性,从而锻炼了学生的数学思维能力,培养了学生数学地思考问题,有利于提升学生的数学思维品质。概念课的教学不同于习题课,如何把新概念引入课堂,如何让学生自然而然接受新概念,如何理解概念的本质和外延,以及如何运用概念。这些都需要教师根据新概念的特点、学生的现状、学习的环境,准确、适当而有力的把握,因为这对于学生以后的学习、思考有着较大的影响。

24、在本课题的探究过程中,基于圆心角的研究,让学生发现弧度制的来源,使得学生明白:新知不是凭空而降,新知来源于旧知,只有把已有的知识充分掌握的情况下,才有可能发现新的知识和内容,这也是创造的源泉。另外,一个新的概念出现之后,不能只停留在表面,需要深入思考,掌握其内容,理解其本质,知道其外延。当然,学生对新概念的再思考,来源于教师的引导,引导取决于教师本身对概念的理解和把握,也需要教师精心设计一些问题引发学生对新概念的再思考、再加工。所以,我认为:学生思维品质的培养和提升,取决于教师独具匠心的“问”和学生积极主动的“思”。对于本课题中问题的设计,我也注意到:问题要能够引发学生的思考,并且能够让学生再

25、思考。比如:弧度制完备性的讨论中,一些问题的设计,使得学生对弧度制度量任意角深入思考,从而培养了学生思考问题的严密性和严谨性,同时也为数学思维品质的提升打下了良好的基础。1.1 任意角和弧度制 第 11 页 共 11 页7.课堂练习,布置作业教材第 9 页:练习 习题 1.1 注:教师根据本班学生情况及其课堂教学灵活安排。8、目标检测1、下列角中终边与 330相同的角是( B )A30 B-30 C630 D-6302、1120角所在象限是 ( D )A第一象限 B第二象限 C第三象限 D第四象限3、把1485转化为 k360(0360, kZ)的形式是 ( D )A454360B454360

26、C455360D31553604、终边在第二象限的角的集合可以表示为: (D )A 90180 B 90 k180180 k180, kZC 270 k180180 k180, kZD 270 k360180 k360, kZ5、下列命题是真命题的是( D )三角形的内角必是一、二象限内的角B第一象限的角必是锐角C不相等的角终边一定不同 D kk,9036| =Zkk,9018| 6、已知 A=第一象限角,B=锐角,C=小于 90的角,那么 A、B、C 关系是( B )AB=AC BBC=C CA C DA=B=C7.在“160480-960-1600”这四个角中,属于第二象限的角是(C )A. B. C. D.8某扇形的面积为 1 2cm,它的周长为 4cm,那么该扇形圆心角的度数为 ( B )A2 B2 C4 D49中心角为 60的扇形,它的弧长为 2,则它的内切圆半径为 ( A)A2 B 3C1 D 23

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 职业教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报