1、第五节 力的分解,银川唐徕回民中学:陈士武 Tel:13995001027 QQ:78121366E-mail:Blog: 力的分解,(1)力的分解:求一个已知力的分力,叫力的分解。,(2)力的分解依据:, 可以依据三角形法则或多边形定则来分解。, 万能分解法:正交分解法。,切记:将一个力分解为几个力,这个力和它的几个分力是等效代换的。并非同时存在!合力是真力,分力是假力!,2、力的分解原则,第五节 力的分解,(1)一个力分解为两个力,从理论上讲有无数组解,因为同一条对角线可以构成的平行四边形有无穷多个。,2、力的分解原则,第五节 力的分解,(2)按照力的实际效果分解:链接,先根据力的实际作用
2、效果确定两个分力的方向; 再根据两个实际分力方向画出平行四边形; 根据平行四边形和学过的数学知识求出两个分力的大小。,2、具体实例,第五节 力的分解,例题1.把一个物体放在倾角为的斜面上,物体并没有在重力作用下竖直下落,从力的作用效果看,应怎样将重力分解?两个分力的大小与倾角有什么关系?,2、具体实例,第五节 力的分解,例1:按力的作用效果分解并根据图示求分力的大小。,2、具体实例,第五节 力的分解,例2:按力的作用效果分解并根据图示求分力的大小。,2、具体实例,第五节 力的分解,例2:按力的作用效果分解并根据图示求分力的大小。,2、具体实例,第五节 力的分解,例3:按力的作用效果分解并根据图
3、示求分力的大小。,2、具体实例,第五节 力的分解,例4:按力的作用效果分解并根据图示求分力的大小。,2、具体实例,第五节 力的分解,例3:按力的作用效果分解并根据图示求分力的大小。,3、力的分解的一些情况汇总,第五节 力的分解,(1)已知合力和两个分力的方向,只有一种分解方法。,3、力的分解的一些情况汇总,第五节 力的分解,(2)已知合力和一个分力的大小和方向时,只有一种分解方法。,3、力的分解的一些情况汇总,第五节 力的分解,(3)已知合力和两个分力的大小时,只有一种分解方法。,3、力的分解的一些情况汇总,第五节 力的分解,(4)已知合力和一个分力的大小和另外一个分力的方向时,有三种情况。,
4、 当 大小: 无解。,3、力的分解的一些情况汇总,第五节 力的分解,(4)已知合力和一个分力的大小和另外一个分力的方向时,有三种情况。, 当 大小: 有一解。,3、力的分解的一些情况汇总,第五节 力的分解,(4)已知合力和一个分力的大小和另外一个分力的方向时,有三种情况。, 当 大小介于: 有二解。,3、力的分解的一些情况汇总,第五节 力的分解,(4)已知合力和一个分力的大小和另外一个分力的方向时,有三种情况。, 当 大小: 有一解。,4、正交分解法,第五节 力的分解,(1)将一个力分解为两个相互垂直的分力的方法。,物体处于平衡态满足方程为:,4、正交分解法,第五节 力的分解,(2)例1:如图
5、,重为500N的人通过滑轮的轻绳牵引重200N的物体,当绳与水平成60o角时,物体静止,不计滑轮与绳子的摩擦,求地面对人的支持力和摩擦力。,竖直:,水平:,4、正交分解法,第五节 力的分解,(2)例2:把一个重为G的物体放在倾角为的斜面上,物体处于静止状态,用力的正交方法,求物体受到的摩擦力和支持力分别为多少?,4、正交分解法,第五节 力的分解,(2)练习1:用绳AC和BC吊起一个重100N的物体,两绳AC、BC与竖直方向的夹角分别为30o和45o,求:绳子AC和BC对物体的拉力分别为多少?,4、正交分解法,第五节 力的分解,(2)练习2:如下图示,小船用绳牵引靠岸,设水的阻力不变,在小船匀速
6、靠岸的过程中,拉力和浮力怎么变?,5、物体动态平衡问题,第五节 力的分解,(1)例题:球重为G,求绳子拉力和墙壁的支持力,并求当绳子变短时,这两个力如何变化?,5、物体动态平衡问题,第五节 力的分解,(2)练习1:,5、物体动态平衡问题,第五节 力的分解,(2)练习2:,5、物体动态平衡问题,第五节 力的分解,(2)练习3:,5、物体动态平衡问题,第五节 力的分解,(2)练习3:,6、物体承受能力类问题,第五节 力的分解,(1)例1:如图,轻绳AC与水平面夹角=30o,BC与水平夹角=60o,若AC、BC能承受的最大拉力不能超过100N,那么重物G不能超过多少?(设绳CD足够牛,强度贼大),6、物体承受能力类问题,第五节 力的分解,(2)练1:如图,用两根等长的绳将质量等于48kg的重物悬挂起来,两悬点M、N在同一水平面上,相距1.2m,已知两绳最大拉力均为340N,为使绳不被拉断,绳子的长度应满足什么条件?,6、物体承受能力类问题,第五节 力的分解,(2)练2:如图所示,弹簧自由长度为R,一端连在半径为R的竖直放置的圆环顶点A,另一端连接一个质量为m的有孔小球,球穿在圆环上可无摩擦地滑动,球静止于B点时,弹簧与竖直方向的夹角为30,求弹簧的劲度系数,