收藏 分享(赏)

《二次根式的加减》第一课时教案分析.docx

上传人:HR专家 文档编号:5824696 上传时间:2019-03-18 格式:DOCX 页数:7 大小:59.06KB
下载 相关 举报
《二次根式的加减》第一课时教案分析.docx_第1页
第1页 / 共7页
《二次根式的加减》第一课时教案分析.docx_第2页
第2页 / 共7页
《二次根式的加减》第一课时教案分析.docx_第3页
第3页 / 共7页
《二次根式的加减》第一课时教案分析.docx_第4页
第4页 / 共7页
《二次根式的加减》第一课时教案分析.docx_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、二次根式的加减第一时教案分析一、内容和内容解析内容二次根式加减运算2内容解析在二次根式性质和乘除运算的基础上,本进一步学习二次根式的加减运算二次根式的加减法是把二次根化为最简二次根式后,合并被开方数相同的二次根式就可以了,所以本内容与整式的加减法类似,在教学中可以让学生体会类比思想的实质,通过具体例子,引导学生探索发现二次根式加减运算的核心是合并被开方数相同的二次根式,基本依据是二次根式的性质和分配律基于以上分析,可以确定本的教学重点是应用分配律进行二次根式的加减运算二、目标和目标解析目标(1)掌握二次根式加减运算的步骤和方法(2)会灵活运用二次根式的有关性质进行二次根式的加减运算2目标解析达

2、成目标(1)的标志是学生经历类比合并同类项的方法后能探究归纳,概括出二次根式加减运算的方法,先把每一个二次根式化成最简二次根式,再运用分配律合并被开方数相同的二次根式目标(2)是通过例题教学使学生掌握运算的技巧方法,并能在练习中加以运用,能说出依据三、教学问题诊断分析类比思想是根据不同对象在某些方面的类似之处,猜想新、旧知识之间的联系与区别在二次根式的加减运算中,最后是合并被开方数相同的二次根式但几个二次根式是否可以合并,这一判断没有整式同类项的判断直接前者往往需要把每一个二次根式化成最简二次根式,这会造成学生学习的困难所以在教学教师引导学生进行类比时,指向一定要明确,由浅入深,总结得出“一化

3、简” 、“二判断” 、 “三合并”的步骤本的教学难点是准确判断可以合并的二次根式,灵活运用性质、算律运算四、教学过程设计(一)创设情景,提出问题问题 1:现有一块长 7d,宽 0d 的木板,能否采用如本图 1631 所示的方式,在这块木板上截出两个面积分别是 8d2 和 18d2 的正方形木板?师生活动:教师引导学生认真读题,分析题意追问 1:满足什么条才能截出两块正方形木板?你能用数学语言表示出来吗?师生活动:学生讨论得出“长够、宽也够” ,从而把问题转化为“长是否够?” ,即转化为比较+与 7大小问题,这就需要计算+引出题“二次根式的加减” 追问 2:你认为可以怎样计算+?师生活动:让学生

4、讨论,教师了解学生的思路,有的学生提出可先估计两个正方形的边长,再把它们的值与木板的长比较;有的提出可化简求和,教师适时给予肯定评价设计意图:用实际问题引出+是让学生感受学习二次根式加减运算的必要性和意义通过分析如何计算+让学生了解到本内容并不是孤立的全新知识,而与二次根式的化简密切相关(二)探索新知,解决问题问题 2:化简结果是多少?师生活动:学生回答,并复习合并同类项的方法追问 1:你能化简吗?师生活动:学生指出它们不是同类项不能合并,老师给予肯定评价追问 2:你能化简吗?师生活动:教师引导学生类比合并同类项,令,学生总结方法得出结果追问 3:能化简吗?与上题区别在哪?师生活动:学生讨论,

5、教师引导,令, ,得出结论:不能、的被开方数不相同设计意图:让学生经历类比合并同类项的方法去探究二次根式加减运算的方法,问题 3:、都是最简二次根式,那、是最简二次根式吗?师生活动:学生回答:不是、 ,教师给予肯定评价追问 1:如何化简+?师生活动:学生讨论得出,教师引导学生类比合并同类项,总结得出二次根式加减运算的方法 “先化成最简二次根式。再把被开方数相同的二次根式进行合并 ”追问 2:你能解决问题情景中的实际问题吗?师生活动:学生思考回答:7 可以在这块木板上截出两个正方形,教师给予肯定评价设计意图:让学生感受到合并同类项与二次根式加减运算的联系与区别,归纳概括出二次根式加减运算的步骤

6、“一化简,二判断,三合并 ”问题 3:化简师生活动:学生独立思考计算,请学生板演,说出计算步骤与依据(二次根式的性质和分配律) 设计意图:将具体数字的运算推广到含有字母的一般二次根式加减运算,渗透从特殊到一般的转化思想,同时强化算理(三)典型例题例 1 计算(1) ;(2) ;(3) ;(4) 师生活动:学生独立完成计算,教师强调步骤和算理,对出现的错误给予评价设计意图:通过例题的教学,使学生进一步巩固二次根式加减运算的步骤和算理练习 1 下列计算是不正确?为什么?(1) ;(2) ;(3) ;(4) 练习 2 计算(1) ;(2) ;(3) ;(4);() ;(6) 设计意图:练习 1 可引导学生辨析计算中的常见错误;练习 2 加强对已学知识的复习,检验本堂教学的知识目标达成度(四)堂小结二次根式加减运算的一般步骤与依据是什么?2在二次根式加减运算中,有哪些地方易错?设计意图:通过归纳总结,实现学生记忆的优化,知识的内化五、同步练习填空(1)(2)(3)(4)设计意图:用分配律做二次根式加减运算2下列二次根式能与合并的是()A与B与与D与设计意图:强调二次根式加减运算的基础是将二次根化成最简二次根式

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 教学研究

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报