1、应用高效厌氧技术处理含高浓度硫酸盐废水摘 要:结合 EGSB 反应器,采用高效厌氧技术处理含高浓度硫酸盐有机废水,在 COD容积负荷为 20 kg/(m3?d)的条件下,确定了最佳上升水流速度(vup)为 6 m/h 左右。驯化1 个月以后,在进水 COD 为 4000 mg/L 的情况下,本试验的最适进水 SO42为15212028 mg/L,对应的最适 COD/ SO42比值为 2.02.6。当 COD 去除负荷为 20 kg/(m3?d)时,SO42 还原负荷达到了 7.60 kg/(m3?d)以上,并且有进一步提升的潜力。关键字:硫酸盐 EGSB 上升水流速度 高效厌氧技术含硫酸盐废水
2、中的硫酸盐本身虽然无害,但是它遇到厌氧环境会在硫酸盐还原菌(SRB)作用下产生 H2S,H 2S 能严重腐蚀处理设施和排水管道,且气味恶臭,严重污染大气。另外硫酸盐废水排入水体会使受纳水体酸化,pH 降低,危害水生生物;排入农田会破坏土壤结构,使土壤板结,减少农作物产量及降低农产品品质。目前,我国很多城市的地下水已经受到不同程度的硫酸盐污染,寻求行之有效的硫酸盐废水处理工艺早已成为环境工程界普遍关注的问题 1。硫酸盐废水来源广泛,按硫酸盐废水的特点可将其分为两大类:第一类废水含有大量的 SO42 和高浓度有机物;第二类废水也含有大量 SO42 ,但有机物含量较少。本研究主要针对第一类废水进行。
3、此类废水的厌氧生物处理工艺可归纳为两大类:(1)单相处理工艺;(2)两相处理工艺 2,3 。比较两种处理工艺,单相处理工艺具有经济简便的优势。应用单相处理工艺时最大的困难在于硫酸盐还原菌(SRB)对产甲烷菌(MPB)的竞争与抑制作用:(1)竞争作用,因为在厌氧反应器内 SRB 与 MPB 同时存在,并且这两类菌可利用同种底物,从而在底物浓度不足时会发生竞争作用,不过由于高浓度有机废水可提供较充足的营养,故对本类废水这已不成为问题;(2)抑制作用,主要是由硫酸盐的还原产物硫化物引起的,尽管由于实验条件、方法的不同,关于抑制程度不同研究人员 4,5 所得出的结果不尽相同,但存在这一抑制作用却是毋庸
4、质疑的。能否成功解除这一抑制作用就成了单相法处理这类废水的关键,这方面已有人提出了多种解决途径,例如气提法、金属离子沉淀法、出水硫化物氧化(如利用各种各样的微生物进行的生物氧化法)与回流工艺相结合的方案等等 1,6,7 。以上方法虽然都有一定的作用,但是操作起来都显得较为繁琐,本试验采用 EGSB 反应器,通过在反应器内维持一定的上升水流速度( vup),从而在 vup以及反应自身所产气体的推动之下将产生抑制作用的 H2S 从液相转移至气相,减轻或解除硫化物的抑制作用。本研究采用上述技术处理含硫酸盐高浓度有机废水,希望在保证废水 COD 去除效果的前提下达到高的硫酸盐去除率和还原负荷。一旦硫酸
5、盐还原成硫化物就可以通过化学或者生物法转化成单质硫 810 ,从而实现废水脱硫的最终目的。1 材料与方法1.1 接种污泥取自某柠檬酸生产企业 IC 反应器中的厌氧颗粒污泥,根据荷兰 Lettinga 推荐的接种量 11,本反应器内的种泥量控制在 1015 kgVSS/m 3。1.2 试验用水采用人工模拟废水,其中 COD:N:P=200:5:1,硫酸盐浓度通过另外添加硫酸钠控制,具体配方见表 1。表 1 模拟废水成分 12 mg/L主要成分 质量浓度 微量元素 质量浓度COD 4000 H 3BO3 0.1蛋白胨 800 ZnCl 2 0.1葡萄糖 2800 CuCl 2 0.06牛肉膏 50
6、0 MnSO 4H2O 0.1NH 4Cl 400 (NH 4)6Mo7O244H2O 0.1KH 2PO4 90 AlCl 3 0.1CaCl 22H2O 60 CoCl 26H2O 0.1MgSO 47H2O 50 NiCl 2 0.1FeSO 47H2O 40 H 3BO3 0.1NaHCO 3 5000 1.3 试验装置试验中的 EGSB 反应器由有机玻璃制成,总体积为 7.0 L,其中反应区为 3.8 L。反应区高度为 104.3 cm,内径为 6.2 cm,高径比约为 16.8。整套试验装置置于恒温室内,温度控制在 30 左右。试验装置及流程如图 1 所示,整套装置形成了一个闭路循
7、环,在换水周期内连续运转。图 1 试验装置及工艺流程图1进水及全回流出水接受容器;2柱塞泵;3湿式气体流量计;4出气管1.4 试验内容与方法采取每天进出水各一次的半连续运行方式。首先在进水中不添加硫酸盐的情况下启动反应器,由于本实验用接种污泥是直接从某企业中正在高负荷运行的 IC 反应器中取出的颗粒污泥,活性非常之高,故在进水 COD4000 mg/L 左右的条件下,COD 容积负荷很快达到了20 kg/(m3d)并能够稳定运行,然后即在此情况下进行下列试验。1.4.1 确定装置运行最佳 vup的试验对于本套装置, vup是保证其稳定运行的至关重要并且需要首先进行研究的参数。相对于从反应器中去
8、除气体的效果而言, vup自然越大越好,但从保证污泥良好稳定生长的角度,vup有最适的取值范围。故决定从污泥生长方面来确定最佳 vup,即待反应器在 20 kgCOD/(m3d)的容积负荷下稳定运行后,考察污泥的生长量(通过污泥床体积来反映)和废水的 COD 去除率。 vup值选取为 2、4、6 及 8 m/h,各阶段运行时间定为 1 周,通过排泥控制运行前的污泥床体积相等,运行期末测一次污泥床体积,并每天检测一次进出水COD。1.4.2 硫酸盐废水处理试验待确定最佳 vup的试验结束后,紧接着即在此 vup值下进行硫酸盐废水处理试验。尽管vup值不是在处理硫酸盐废水时得到的,因此不一定最适于
9、硫酸盐废水处理,但是利用其作为本实验的运行参数仍不失为一项可行的策略。在维持 COD 容积负荷 20 kg/(m3d)不变的条件下,通过向进水中添加 Na2SO4并逐渐提高加入量来进行本试验,其中加入的 Na2SO4量依次为 20、30、45 及 60 g,对应的进水中 SO42 分别为 676、1014、1521 和 2028 mg/L,待硫酸盐还原率与 COD 去除率均达到 80%以上,并稳定运行 3 d 后即可进入下一阶段。1.5 分析项目与方法COD:半微量快速烘箱法;pH:pH-2S 型酸度计;碱度:分步滴定法 13;MLSS(悬浮固体)及 MLVSS(挥发性悬浮固体):重量法 14
10、;SO 42 :络合滴定法 13;硫化物:滴定法 14;颗粒污泥沉降速度:取量程为 1 L 的量筒,测定其高度,并注满清水。将用自来水淘洗过的颗粒污泥逐个加入量筒内,用秒表计量单个颗粒污泥从筒口沉降到筒底所需时间t,然后利用公式 v=H/t(v 为沉速,H 为量筒高度, t 为沉淀时间)计算得出该颗粒污泥的沉速。测试过程中,在某个粒径范围内一般测定其中 2030 个任意选取的颗粒污泥进行测试,取其平均值作为该粒径范围颗粒污泥的沉速。2 结果与讨论2.1 最佳运行 vup的确定据资料反映,EGSB 反应器的 vup一般为 510 m/h 15。从图 2 和图 3 明显可以看出通过污泥的生长量和废
11、水的 COD 去除率确定的本工艺最佳 vup为 6 m/h。当 vup较低时, vup产生的搅动效果不够,反应器内会出现“气袋” 16,影响了传质效果,从而带来污泥生长活性及去除效果的下降;而当 vup较高时会对污泥造成较大的剪切力,使得污泥流失量增加,同样对污泥生长不利。这从各个阶段的出水 SS 值亦可反映出来,当 vup值取为 2、4、6 及8 m/h 时对应的 SS 值分别约为 150、175、250 及 370 mg/L,可见在前面三种条件下,反应器出水和 COD 去除率较为平稳,而当 vup为 8 m/h 时反应器运行非常不稳定,出水 SS 和COD 去除率变化较大。因此,认为 vu
12、p6 m/h 时的上升流速较为适合颗粒污泥厌氧反应体系。经检测在 6 m/h 阶段下的颗粒污泥性质良好,沉降速度达到了 88 m/h,粒径一般在 23 mm。图 2 不同 vup阶段的反应器运行情况注:从左至右对应 vup分别为 2、4、6 及 8 m/h。2.2 硫酸盐废水处理过程从图 4 可以看出,在整个驯化过程中 COD 去除率较为平稳,基本在 90%上下波动,说明高浓度硫酸盐并未对 COD 的去除造成不利影响,SRB 和 MPB 对 COD 去除都有一定的作用。图 3 不同 vup阶段运行前后污泥床体积变化而结合图 5 分析可知,在高硫酸盐浓度(2028mg/L)之下,由于 SRB 对
13、底物的需求量大增,这就导致在底物 COD 浓度有限的情况下,SRB 与其他厌氧细菌之间发生强烈竞争作用,试验结果则说明如此之高的硫酸盐浓度超出了 SRB 的还原能力。因此,在进水 COD 为4000 mg/L 的条件下,本试验的最适进水 SO42 浓度(意即在保证废水处理效果的同时,进水中所允许的最高硫酸盐浓度)在 15212028 mg/L,因为一般认为采用 COD/SO42 比值较进水 SO42 浓度更能确切地反映硫酸盐对废水厌氧消化的影响程度,故本试验的最适 COD/ SO42 比值(对应于最适进水 SO42 浓度)在 2.02.6。另外对各阶段排水中的硫化物分析可知,其浓度(以 H2S
14、 表示)都在 200mg/L 以下,基本不构成对 SRB 及 MPB 活性的抑制,从而这亦能够说明进水 SO42 得不到充分还原是由于底物浓度不足(或者 COD/ SO42 比值不当)引起的。整个试验过程中的出水硫化物浓度一直维持在一个较低的水平上,这就验证了 6 m/h的 vup能够保证一定的气提效果。本试验采用 NaHCO3控制进水碱度,添加量见表 1,但考虑到进水 SO42 在转化过程中会产生部分碱度,故当进水 SO42 增至 2028mg/L 时,将 NaHCO3添加量减少了一半,检测表明出水碱度、pH 并未受到很大影响,所以这样做完全可行。图 4 硫酸盐废水的 COD 变化曲线2.3
15、 硫酸盐还原负荷的变化过程随着驯化过程的进行,硫酸盐还原负荷(阶段平均值)得以逐渐提升(图 6),在进水 SO42 为 1521mg/L(COD:SO 42 值约为 2.6)时,硫酸盐还原负荷已经达到了 7.60 kg/(m3d),图 5 SO42 变化曲线说明在本试验条件下,硫酸盐还原负荷最高可达到 7.60 kg/(m3d)以上,相比其他一些文献报道 1719 的数据而言,上述结果相当令人满意。需要说明的是,由于时间所限,本试验只是对硫酸盐废水处理的可行性作了一下简单研究,没有得出本技术的最大处理能力(进水 COD 固定在 4000 mg/L 左右),所以该技术仍有进一步提升的潜力。图 6
16、 硫酸盐还原负荷变化曲线3 结 论(1)在 COD 容积负荷为 20 kg/(m3d)的情况下,从有利于污泥生长的角度得出最佳vup为 6 m/h 左右,并作为本技术的运行参数。(2)经过 1 个多月的驯化,在进水 COD 为 4000 mg/L 的条件下,最适进水 SO42 在15212028 mg/L,对应的最适 COD/ SO42 比值在 2.02.6,并验证了 6 m/h 的 vup作用于本试验的有效性。(3)在 COD 去除负荷为 20 kg/(m3d)的情况下,SO 42 还原负荷可达到 7.60 kg/(m3d)以上,并且有进一步提升的潜力。总之,本技术操作运行非常简便经济,这既
17、体现在单相工艺上,又因为它与一般的EGSB 流程相比,省却了一个进水泵,减少投资的同时又简化了操作;同时从试验结果可以看出,它对于处理含硫酸盐高浓度有机废水又是非常有效的,因此极有推广应用的价值。参考文献1 王爱杰,王丽燕,任南琪,等.硫酸盐废水生物处理工艺研究进展.哈尔滨工业大学学报,2004,36(11):14461449,15012 康风先.硫酸盐还原-甲烷化两相厌氧法过程和机理研究:博士学位论文.无锡:无锡轻工业学院,1994.43 康 宁,伦世仪.硫酸盐还原-甲烷化两相厌氧消化系统运行工艺条件的研究.工业微生物,1996,26(3):194 杨 平,潘永亮,王 彬,等.厌氧流化床反应
18、器处理含硫废水毒性的实验.中国环境科学,2000,20(4):3783815 陈 平,张希衡.关于硫化物抑制厌氧消化的新探讨.西安建筑科技大学学报,1996,28(3):311314,3426 张耀斌.铁锈及 Fe(OH)3处理硫酸盐废水厌氧方法试验.中国环境科学,1999,19(6):4934957 冀滨弘,章非娟.高硫酸盐有机废水厌氧处理技术的进展.中国沼气,1999,17(3):378 Kim B W,Chang H N.Removal ofhydrogen sulfide by Chlorobiam thiosulfatophilumin immobilized-cell andsul
19、fur-settling free-cell recycle reactor.Biotechnol.Prog.,1991,7:4955009 Buisman C J N,Ijspeert P,Hof A,et al.Kinetic parameters of a mixedculture oxidizing sulfide and sulfur with oxygen.Biotechnol.Bioeng.,1991,38:81382010 Basu R,Clausen E C,Gaddy J L.Biological conversion of hydrogen sulfide into el
20、ementalsulfur.Environ.Prog.,1996,15:23423811 申立贤.UASB 反应器的启动与污泥颗粒化.江苏沼气,1991,(1):81412 Yan Y G,Tay J H.Characterisation of the granulation process during UASB start-up.Wat.Res.,1997,31(7):1573158013 贺延龄.废水的厌氧生物处理.北京:中国轻工出版社,1998.50256014 卢里耶.工业污水的化学分析.雷世寰等译.北京:化学工业出版社,1989.20120715 胡纪萃.废水厌氧生物处理理论与技术
21、.北京:中国建筑工业出版社,2002.21816 Mahmoud N,Zeeman G,GijzenH,et al.Solids removal in upflow anaerobic reactors,a review. Bioresource Technology,2003,90:1917 赵 毅,杨景亮,任洪强,等.含硫酸盐高浓度有机废水生物处理技术.中国环境科学,1999,19(3):28128418 刘广民,任南琪,王 旭,等.连续流完全混合生物膜法处理硫酸盐废水.中国给水排水,2003,19(10):101319 杨景亮,左剑恶,胡纪萃.两相厌氧工艺处理含硫酸盐有机废水的研究.环境科学,1995,16(3):811,54