1、第三课时教学目标:1了解科学计数法的概念, 会用科学计数法表示较大的数; 2了解近似数和有效数字的概念,体会近似数的意义及在生活中的作用;3能说出一个近似数的精确度或有几个有效数字;能按照要求用四舍五入的方法,取一个数的近似数教学重点:用科学计数法表示较大的数.理解近似数的精确度和有效数字教学难点:用科学计数法记一个小于-10 的数,正确把握一个近似数的精确度及它的有效数字的个数,用科学记数法表示的近似数的精确度和有效数字的个数.教学程序设计:一 知识梳理1. 科学记数法也就是把一个数表示成 a10n 的形式,其中 0a10 的数,n 的值等于整数部分的位数减 1.2一个近似数,四舍五入到哪一
2、位,就说这个近似数精确到哪一位换句话说这个近似数最末一个数字所处数位就是它的精确度如:2.59 是精确到百分位3对于一个写成 用科学记数法写出的数,则看数 的最末一位在原数中所在数位如: 所以 精确到百位4确定有效数字应注意:(1 )有效数字是指从左起第一个不是零的数字起,到精确到的数位止的所有数字从左起第一个不是零的数字左边的零不是有效数字,而从这个数往右的零不论在中间还是末尾都是有效数字如:0.00250 有三个有效数字 2,5,0 (2 )以 (科学记数法)形式写成的数的有效数字与数 的有效数字完全相同如: 有 2 个有效数字: 2,5 5取近似数,应看要求精确到的数位的下一位数字,然后
3、按四舍五入的总原则取近似值,而不看其它数位上的数如:2.598 精确到十分位是 2.66科学记数法形式 写出的数取近似值往往容易出错,按四舍五入原则取值后,舍掉的整数位应补上 0,然后把这个数用科学记数法表示出来二 典型例题例 1 用科学记数法记出下列各数:(1)1 000 000;(2)57 000 000;(3)123 000 000 000解:(1)1 000 000=1106.(2)57 000 000=5.7107(3 ) 123 000 000 0001.2310 11. 注意:一个数的科学记数法中,10 的指数比原数的整数位数少 1,如原数有 6 位整数,指数就是 5.例 2 判
4、断下列各数,哪些是准确数,哪些是近似数:(1)初一(2)班有 43 名学生,数学期末考试的平均成绩是 82.5 分;(2)某歌星在体育馆举办音乐会,大约有一万二千人参加;(3)通过计算,直径为 10cm 的圆的周长是 31.4cm;(4)检查一双没洗过的手,发现带有各种细菌 80000 万个;(5)1999 年我国国民经济增长 7.8解:(1)43 是准确数因为 43 是质数,求平均数时不一定除得尽,所以 82.5 一般是近似数;(2)一万二千是近似数;(3)10 是准确数,因为 3.14 是 的近似值,所以 31.4 是近似数;(4)80000 万是近似数;(5)1999 是准确数, 7.8
5、是近似数说明:1在近似数的计算中,分清准确数和近似数是很重要的,它是决定我们用近似计算法则进行计算,还是用一般方法进行计算的依据产生近似数的主要原因:(1)“计算”产生近似数如除不尽,有圆周率 参加计算的结果等等;(2)用测量工具测出的量一般都是近似数,如长度、重量、时间等等;(3)不容易得到,或不可能得到准确数时,只能得到近似数,如人口普查的结果,就只能是一个近似数;(4)由于不必要知道准确数而产生近似数例 3 下列由四舍五入得到的近似数,各精确到哪一位?各有哪几个有效数字?(1)38200 (2)0.040 (3)20.05000 (4)4104分析:对于一个四舍五入得到的近似数,如果是整
6、数,如 38200,就精确到个位;如果有一位小数,就精确到十分位;两位小数,就精确到百分位;象 0.040 有三位小数就精确到千分位;象 20.05000 就精确到十万分位;而 4104=40000,只有一个有效数字 4,则精确到万位有效数字的个数应按照定义计算解:(1)38200 精确到个位,有五个有效数字 3、8、2、0、0(2)0.040 精确到千分位(即精确到 0.001)有两个有效数字 4、0(3)20.05000 精确到十万分位( 即精确到 0.00001),有七个有效数字2、0、0 、5 、0 、0、0 (4)4104 精确到万位,有一个有效数字 4说明:(1)一个近似数的位数与
7、精确度有关,不能随意添上或去掉末位的零如 20.05000 的有效数字是 2、0 、0、5、0、0、0 七个而 20.05 的有效数字是 2、0、0、5 四个因为 20.05000精确到 0.00001,而 20.05 精确到 0.01,精确度不一样,有效数字也不同,所以右边的三个0 不能随意去掉(2)对有效数字,如 0.040,4 左边的两个 0 不是有效数字,4 右边的 0 是有效数字(3)近似数 40000 与 4104 有区别,40000 表示精确到个位,有五个有效数字 4、0、0 、0、0,而 4104 表示精确到万位,有 1 个有效数字 4例 4 下列由四舍五入得到的近似数,各精确
8、到哪一位?各有几个有效数字?(1)70 万 (2)9.03 万 (3)1.8 亿 (4)6.40105分析:因为这四个数都是近似数,所以(1)的有效数字是 2 个:7 、0,0 不是个位,而是“万”位;(2)的有效数字是 3 个:9 、0、3,3 不是百分位,而是“ 百”位;(3)的有效数字是 2 个:1 、8,8 不是十分位,而是“千万”位;(4)的有效数字是 3 个:6 、4、0,0 不是百分位,而是“ 千”位解:(1)70 万. 精确到万位,有 2 个有效数字 7、0 ;(2)9.03 万.精确到百位,有 3 个有效数字 9、0 、3;(3)1.8 亿. 精确到千万位,有 2 个有效数字
9、 1、8 ;(4)6.40105.精确到千位,有 3 个有效数字 6、4、0 说明:较大的数取近似值时,常用万, 亿等等来表示,这里的“”表示这个近似数的有效数字,而它精确到的位数不一定是“万”或“ 亿”对于不熟练的学生,应当写出原数之后再判断精确到哪一位,例如 9.03 万=90300,因为“3” 在百位上,所以 9.03 万精确到百位例 5 用四舍五入法,按括号里的要求对下列各数取近似值(1)1.5982( 精确到 0.01) (2)0.03049(保留两个有效数字)(3)3.3074( 精确到个位) (4)81.661(保留三个有效数字)分析:四舍五入是指要精确到的那一位后面紧跟的一位,
10、如果比 5 小则舍,如果比 5 大或等于 5 则进 1,与再后面各位数字的大小无关(1)1.5982 要精确到 0.01 即百分位,只看它后面的一位即千分位的数字,是 85 ,应当进1,所以近似值为 1.60(2)0.03049 保留两个有效数字, 3 左边的 0 不算,从 3 开始,两个有效数字是 3、0,再看第三个数字是 45,应当舍,所以近似值为 0.030(3)、(4)同上解:(1)1.59821.60 (2)0.030490.030 (3)3.30743 (4)81.66181.7说明:1.60 与 0.030 的最后一个 0 都不能随便去掉1.60 是表示精确到 0.01,而 1.
11、6 表示精确到 0.1对 0.030,最后一个 0 也是表示精确度的,表示精确到千分位,而 0.03 只精确到百分位三 课堂反馈1.用科学记数法记出下列各数.(1)30060; (2)15 400 000;(3)123000.2.下列用科学记数法记出的数,原来各是什么数?(1)2 ;(2)7.12 ;(3)8.5 .51031063已知长方形的长为 7105mm,宽为 5104mm,求长方形的面积.4把 199 000 000 用科学记数法写成 1.9910n3 的形式,求 n 的值.5. 由四舍五入得到的近似数 0.600 的有效数字是 ( )A. 1 个 B. 2 个 C. 3 个 D.
12、4 个6. 用四舍五入法取近似值,3.1415926 精确到百分位的近似值是_,精确到千分位近似值是_7. 用四舍五入法取近似值,0.01249 精确到 0.001 的近似数是_,保留三个有效数字的近似数是_8. 用四舍五入法取近似值,396.7 精确到十位的近似数是_;保留两个有效数字的近似数是_9. 用四舍五入法得到的近似值 0.380 精确到_位,48.68 万精确到_ 位四 总结反思 拓展升华1四舍五入法求近似数时,要精确到哪一位,只与它下一位的数字有关,而不管再下一位数字的大小是多少2精确度的形式有两种: 精确到哪一位;保留几个有效数字,给定一个近似数,要确定其精确度,主要由该近似数
13、的最后一位有效数字在该数中所处的位置决定3一个近似数有时用科学记数法表示较方便,便于确定该数的有效数字用科学记数法表示的近似数,其有效数字的位数只看乘号前面的部分.五 作业一.选择题1、 1.449 精确到十分位的近似数是( )A.1.5 B.1.45 C.1.4 D.2.02、由四舍五入法得到的近似数 0.002030 的有效数字的个数是( )A.3 B.4 C.5 D.63、用四舍五入法,分别按要求取 0.06018 的近似值,下列四个结果中错误的是( )A.0.1(精确到 0.1) B.0.06(精确到 0.001)C. 0.06(精确到 0.01) D.0.0602(精确到 0.000
14、1)4、有效数字的个数是( )A.从右边第一个不是零的数字算起 B. 从左边第一个不是零的数字算起C.从小数点后第一个数字算起 D. 从小数点前第一个数字算起5、下列数据中,准确数是( )A.王敏体重 40.2 千克 B.初一(3)班有 47 名学生C.珠穆朗玛峰高出海平面 8848.13 米 D.太平洋最深处低于海平面 11023 米6、 12.30 万精确到( )A.千位 B.百分位 C.万位 D.百位7、 20000 保留三个有效数字近似数是( )A.200 B. C. D.52014042.18、 208031 精确到万位的近似数是( )A. B. C. D. 2.08 万55.49、
15、 的有效数字是( )43.10A.3,1 B.3,1,0 C.3,1,0 ,0,0 D.3,1 ,0,1 ,010、由四舍五入法得到的近似数 ,下列说法中正确的是( )53.2A.有 3 个有效数字,精确到百位 B.有 6 个有效数字,精确到个位C.有 2 个有效数字,精确到万位 D. 有 3 个有效数字,精确到千位11、下列说法中正确的是( )A.近似数 3.50 是精确到个位的数,它的有效数字是 3、5 两个B. 近似数 35.0 是精确到十分位的数,它的有效数字是 3、5 、0 三个C.近似数六百和近似数 600 的精确度是相同的D.近似数 1.7 和 1.70 是一样的12、近似数 2
16、.60 所表示的精确值 的取值范围是( )xA. B. 2.59.605x2.0.7C. D. 65二.填空题1、 1.90 精确到 位,有 个有效数字,分别是 。2、用四舍五入法对 60340 取近似值(保留两个有效数字)60340 。3、近似数 精确到 位,有 个有效数字。36.014、 0.02076 保留三个有效数字约为 。5、对 精确到千位约是 ,有 个有效数字。4.6、我国国土面积约为 9600000 平方千米,用科学记数法表示为 。 (保留三个有效数字)7、根据国家统计局公布的我国第五次人口普查的数据,我国现有人口约 12.95 亿,那么这个数据(保留三个有效数字)用科学记数法表
17、示为 。8、圆周率 精确到百分位是 。3.145929、真空中光的速度为 299792458 米/秒,用科学记数法表示为 米/秒。 (保留两个有效数字)三.解答题1、用科学记数法表示下列各数:(1 )太阳的半径约是 696000 千米;(2 )据统计,全球每分钟约有 85000 吨污水排入江河湖海.2、地球绕太阳转动每小时通过 110000km,则它一昼夜通过多少千米?(用科学记数法表示)3、下列由四舍五入法得到的近似数,各精确到哪一位?各有几个有效数字?25.7 28 0.501 0.03 2.89 万53.2104、用四舍五入法,对下列各数按括号中的要求取近似数。4.0056(保留三个有效数字)9.23456(精确到 0.0001)5678999(精确到万位)5678999(精确到百位)5、某学生在进行体检时,量得身高约为 1.60 米,他在登记时写成 1.6 米,从近似数的意义上去理解,测量结果与登记数是否一致?为什么?6、 中华人民共和国国民经济社会发展第十个五年计划纲要明确指出,到 2005 年按2000 价格计算的国内生产总值要达到 12.5 万亿元左右,其中数据 12.5 万亿有几个有效数字?是哪几个?