收藏 分享(赏)

2.2 等腰三角形的性质 教案3(数学浙教版八年级上册).doc

上传人:HR专家 文档编号:5460883 上传时间:2019-03-04 格式:DOC 页数:4 大小:442KB
下载 相关 举报
2.2 等腰三角形的性质 教案3(数学浙教版八年级上册).doc_第1页
第1页 / 共4页
2.2 等腰三角形的性质 教案3(数学浙教版八年级上册).doc_第2页
第2页 / 共4页
2.2 等腰三角形的性质 教案3(数学浙教版八年级上册).doc_第3页
第3页 / 共4页
2.2 等腰三角形的性质 教案3(数学浙教版八年级上册).doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、2.2 等腰三角形的性质教学目标1、经历利用轴对称变换推导等腰三角形的性质,并加深对轴对称变换的认识. 2、掌握等腰三角形的下列性质:等腰三角形的两个底角相等;等腰三角形三线合一3、会利用等腰三角形的性质进行简单的推理、判断、计算和作图 教学重点与难点教学重点:本节教学的重点是理解并掌握等腰三角形的性质:等边对等角;三线合一.教学难点:等腰三角形三线合一性质的运用,在解题思路上需要作一些转换,例如例2,是本节教学的难点.教学方法可采用学生在任务驱动下的自主学习与教师辅导相结合课前准备学生:准备一些等腰三角形,预习本节内容教师:教学活动材料,多媒体课件教学过程一创设情境,自然引入1.温故检测:

2、叫做等腰三角形;等腰三角形是轴对称图形,它的对称轴是 。两边相等的三角形叫做等腰三角形。特殊情况是正三角形。对称轴是等腰三角形顶角平分线所在的直线。 2.悬念、引子、思考将一把三角尺和一个重锤如图放置,就能检查一根横梁是否水平,你知道为什么吗?说明:首先这个三角形必须是等腰三角形,要不然三角形就放不平.对于“为什么”学生可能会回答“不知道” ,那就进入下一环节“合作学习,探究等腰三角形的性质” ;也有可能会回答“等腰三角形三线合一” ,因为不能排除有部分学生“预习过”什么的.那就可以追问“等腰三角形三线为什么会合一” ,学生会说,就让他说,但不管会说,还是不会说,都要进入下一环节“合作学习,探

3、究等腰三角形的性质” ;这是考虑到大多数学生的利益.二交流互动,探求新知1等腰三角形的性质合作学习:分三组教学活动材料教学活动材料 1:如图 25,在等腰三角形 ABC 中,ABAC,AD 平分BAC,交 BC 于 D,(1)把这个等腰三角形剪下来,然后沿着顶角平分线对折,仔细观察重合的部分,并写出所发现的结论。(2)你发现了等腰三角形的哪些性质?教学活动材料 2:如图 25,在等腰三角形 ABC 中,ABAC,AD 平分BAC,交 BC 于 D,(1)根据我们已经获得的等腰三角形是轴对称图形,图 2-5 中等腰三角形 ABC 的对称轴是什么?ABD 各个顶点的对称点分别是什么?由此可见,将A

4、BD 作关于直线 AD 的轴对称变换,所得的像是什么?(2)根据轴对称变换的性质:轴对称变换不改变图形的形状和大小.找出图中的全等三角图 2-5ABC形,以及所有相等的线段和相等的角.(3)你有什么发现?能得出等腰三角形的哪些性质?教学活动材料 3:如图 25,在等腰三角形 ABC 中,ABAC,AD 平分BAC,交 BC 于 D,(1)根据学过的全等三角形判定方法找出图中的全等三角形,根据全等三角形的性质找出所有相等的线段和角(2)你发现了等腰三角形的哪些性质?(发给学生活动材料,四人一组先合作学习,再交流讨论,经历等腰三角形性质的发现过程,教师应给学生一定的时间和机会,来清晰地、充分地讲出

5、自己的发现,并加以引导,用规范的数学语言进行归纳,最后得出等腰三角形的性质.)结论:等腰三角形性质定理 1:等腰三角形的两个底角相等。或“在一个三角形中,等边对等角”等腰三角形性质定理 2:等腰三角形的顶角平分线、底边上的中线和高线互相重合.简称等腰三角形三线合一.2多媒体演示:教师借助媒体的动态效果,介绍在一个三角形中,等边对等角和三角形一边上中线、高线及角平分线的相对位置,帮助学生在理解的基础上,掌握等腰三角形的性质.3解决节前图中的悬念,如果重锤经过三角尺斜边的中点,那么可以判定梁是水平的.你能说明理由吗?(当重锤线经过三角尺斜边的中点时,重锤线与斜边上的高线叠合(等腰三角形三线合一)

6、,即斜边与重锤线垂直,所以斜边与梁是水平的.及时地解决问题,使学生懂得学习的价值.)4应用定理时的推理格式:用几何语言表述为:在ABC 中,如图,ABAC BC(在一个三角形中等边对等角)在ABC 中,如图(1)ABAC ,12ADBC,BDDC (等腰三角形三线合一)(2)ABAC,BDDC ADBC,12(3)ABAC,ADBCBDDC,125例题学习例 1 如图 2-6,在ABC 中,ABAC, A50,求B,C 的度数. 解:在ABC 中,ABAC ,BC(在一个三角形中等边对等角)ABC180,A50,BC 65.180 A2 180 502练习 1P36课内练习 2(例 1 和练习

7、 1 是巩固“等腰三角形的两个底角相等”这条性质而配置的,比较简单,可以让学生自己去探索,并完成解题过程,然后师生突出评述推理过程.)例 2 已知线段 a,h(如图 2-7)用直尺和圆规作等腰三角形 ABC,使底边 BCa,BC 边上的高线为 h.ABCD12图 2-6ABC教学中可作如下启发:(1)假设图形已经作出,如课本图 28,BC 长已知,可以先作出 BC 边,要作等腰三角形ABC,关键是要作出哪一个点?(2)已知 BC 边上的高线的长度为 h,你能作出 BC 边上的高线吗?等腰三角形底边上的高线与中线有什么关系?由此能确定顶点 A 的位置吗?(例 2 是运用尺规作等腰三角形,作法思路

8、需要作一些分析转换,是本节教学的难点,在操作过程中要让学生体验等腰三角形三线合一的性质)练习 2 填空:(1)在ABC 中,ABAC,若A40则C ;若B72,则A .(2)在ABC 中,ABAC,BAC40,M 是 BC 的中点,那么AMC ,BAM .(3)如图,在ABC 中,ABAC,DAC 是ABC 的外角。BAC180 B,B ( )12DAC C(4)如图,在ABC 中,ABAC,外角DCA100,则B 度. (以此来巩固等腰三角形的性质,同时培养学生的观察分析的能力)三合作探究,强化能力.探究 1:已知在ABC 中,ABAC,直线 AE 交 BC 于点 D,O 是 AE 上一动点

9、但不与 A 重合,且 OBOC,试猜想 AE 与 BC 的关系,并说明你的猜想的理由. 猜想:AEBC,BDCDABAC(已知)OBOC(已知)AOAO(公共边)ABOACO(SSS)BAOCAOAEBC,BDCD(等腰三角形底边上中线,底边上高线与顶角平分线互相重合)探究 2:等腰三角形两底角的平分线大小关系。已知:如图,在ABC 中,ABAC,BD、CE 分别是两底角的平分线。猜想:BDCE.解:ABAC(已知) , ABCACB (在一个三角形中等边对等角)BD、CE 分别是两底角的平分线(已知)DBC ABC,DCB ACB (角平分线的定义)12 12DBCDCB,在DBC 和ECB

10、 中DBCDCB,BCCB(公共边) ,ABCACB , ABCDEABCD图 -7ah ABDAB CDOEDBCECB(ASA)BDCE(全等三角形对应边相等)(探究 1 需要学生根据数学语言画出几何图形,然后进行归纳、猜想、推理;探究 2 需要学生把文字转化为数学语言和几何图形,再进行归纳、猜想、推理,要求更高些;初衷有一个,那就是培养学生归纳、猜想、推理的自主学习的能力,以上两例都有一定的难度,教师可以根据班级的实际情况选用)四归纳小结,强化思想1在本节课的学习中,你有哪些收获?和我们共享.2你还有什么不理解的地方,需要老师或同学帮助.(采用谈话式小结,沟通师生之间的情感,给学生一个梳理知识的空间,培养学生的知识整理能力与语言表达能力)五作业1作业本2预习 2.3 节内容

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报