1、课 题 2.2、配方法(第 3 课时) 课型 新授课教学目标 1利用方程解决实际问题2训练用配方法解题的技能教学重点 利用方程解决实际问题教学难点 对于开放性问题的解决,即如何设计方案教学方法 分组讨论法教学后记教 学 内 容 及 过 程 学生活动一、复习:1、配方:(1)x 23x+ =(x )2(2)x 25x+ =(x )22、用配方法解一元二次方程的步骤是什么?3、用配方法解下列一元二次方程?(1)3x 21=2x (2)x25x+4=0二、引入课题:我们已经学习了用配方法解一元二次方程,在生产生活中常遇到一些问题,需要用一元二次方程来解答,请同学们将课本翻到 54 页,阅读课本,并思
2、考:三、出示思考题:1、如图所示:(1)设花园四周小路的宽度均为 x m,可列怎样的一元二次方程?(2)一元二次方程的解是什么?(3)这两个解都合要求吗?为什么?1、2 学生口答学生演板阅读课本观察与思考(16-2x) (12-2x)= 161212x1=2 x2=12x1=2 合要求, x2=12 不合要求,因荒地的宽为 12m,小路的宽不可能为12m,它必须小于荒地宽的一半。2、设花园四角的扇形半径均为 x m,可列怎样的一元二次方程?(2)一元二次方程的解是什么?(3)合符条件的解是多少?3、你还有其他设计方案吗?请设计出来与同伴交流。四、练习:P56 随堂练习看课本 P53P54,然后
3、小结五、小结:1、本节内容的设计方案不只一种,只要合符条件即可。2、设计方案时,关键是列一元二次方程。3、一元二次方程的解一般有两个,要根据实际情况舍去不合题意的解。六、作业:(一)P56,习题 2.5,1、2(二)预习内容:P56P57 板书设计:x2= 121612X1= 5.596X25.5X1=5.51)花园为菱形 (2)花园为圆形?(3)花园为三角形 (4)花园为梯形本节课我们通过列方程解决实际问题,进一步了解了一元二次方程是刻画现实世界中数量关系的一个有效数学模型,并且知道在解决实际问题时,要根据具体问题的实际意义检验结果的合理性。另外,还应注意用配方法解题的技能一、设计方案二、练习三、小结