1、第25章 直角三角形的边角关系,25.1从梯子的倾斜程度谈起(6),在直角三角形中,若一个锐角的对边与邻边的比值是一个定值,那么这个角的值也随之确定.,正切与余切,直角三角形中边与角的关系:锐角的三角函数-正切函数,在RtABC中,锐角A的对边与邻边的比 叫做A的正切,记作tanA,即,本领大不大 悟心来当家,如图,当RtABC中的一个锐角A确定时,它的对边与邻边的比便随之确定.此时,其它边之间的比值也确定吗?,结论: 在RtABC中,如果锐角A确定时,那么 A的对边与斜边的比,邻边与斜边的比也随之确定.,正弦与余弦,在RtABC中,锐角A的对边与斜边的比叫做A的正弦,记作sinA,即,在Rt
2、ABC中,锐角A的邻边与斜边的比叫做A的余弦,记作cosA,即,锐角A的正弦,余弦,正切和都是做A的三角函数.,生活问题数学化,结论:梯子的倾斜程度与sinA和cosA有关: sinA越大,梯子越陡;cosA越小,梯子越陡.,如图,梯子的倾斜程度与sinA和cosA有关吗?,行家看“门道”,例2 如图:在RtABC中,B=900,AC=200,sinA=0.6. 求:BC的长.,老师期望: 请你求出cosA,tanA,sinC,cosC和tanC的值.你敢应战吗?,解:在RtABC中,知识的内在联系,求:AB,sinB.,怎样思考?,如图:在RtABC中,C=900,AC=10,老师期望: 注
3、意到这里cosA=sinB,其中有没有什么内有的关系?,真知在实践中诞生,1.如图:在等腰ABC中,AB=AC=5,BC=6. 求: sinB,cosB,tanB.,咋办,求:ABC的周长.,老师提示:过点A作AD垂直于BC于D.,2.在RtABC中,C=900,BC=20,八仙过海,尽显才能,3.如图,在RtABC中,锐角A的对边和邻边同时扩大100倍,sinA的值( ) A.扩大100倍 B.缩小100倍 C.不变 D.不能确定,4.已知A,B为锐角 (1)若A=B,则sinA sinB; (2)若sinA=sinB,则A B.,八仙过海,尽显才能,5.如图, C=90CDAB.,6.在上
4、图中,若BD=6,CD=12.求cosA的值.,老师提示: 模型“双垂直三角形”的有关性质你可曾记得.,八仙过海,尽显才能,7.如图,分别根据图(1)和图(2)求A的三个三角函数值.,8.在RtABC中,C=90, (1)AC=3,AB=6,求sinA和cosB (2)BC=3,sinA= ,求AC和AB.,老师提示: 求锐角三角函数时,勾股定理的运用是很重要的.,八仙过海,尽显才能,10.在RtABC中,C=90,AB=15,sinA= , 求AC和BC.,11.在等腰ABC中,AB=AC=13,BC=10, 求sinB,cosB.,老师提示: 过点A作AD垂直于BC,垂足为D. 求锐角三角
5、函数时,勾股定理的运用是很重要的.,相信自己,12. 在RtABC中,C=90. (1)AC=25.AB=27.求sinA,cosA,tanA, 和sinB,cosB,tanB,. (2)BC=3,sinA=0.6,求AC 和AB. (3)AC=4,cosA=0.8,求BC.,13.在梯形ABCD中,AD/BC,AB=DC=13,AD=8,BC=18. 求:sinB,cosB,tanB.,老师提示: 作梯形的高是梯形的常用辅助,借助它可以转化为直角三角形.,回味无穷,定义中应该注意的几个问题:,1.sinA,cosA,tanA, 是在直角三角形中定义的,A是锐角(注意数形结合,构造直角三角形)
6、. 2.sinA,cosA,tanA, 是一个完整的符号,表示A的正切,习惯省去“”号; 3.sinA,cosA,tanA,是一个比值.注意比的顺序,且sinA,cosA,tanA,均0,无单位. 4.sinA,cosA,tanA, 的大小只与A的大小有关,而与直角三角形的边长无关. 5.角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.,回味无穷,回顾,反思,深化,1.锐角三角函数定义:,请思考:在RtABC中, sinA和cosB有什么关系?,知识的升华,习题25.2 1,2,3,4题;祝你成功!,1. 如图,分别求,的正弦,余弦,和正切.,2.在ABC中,AB=5,BC=13,AD是BC边上的高,AD=4.求:CD,sinC.,3.在RtABC中,BCA=90,CD是中线,BC=8,CD=5. 求sinACD,cosACD和tanACD.,4.在RtABC中,C=90,sinA和cosB有什么关系?,再见,