1、第四节 三角函数的图象与性质(1),物 理 小 实 验,2.单摆实验,仔细观察下列两个实验中形成的图象,1.弹簧振子,2.任意给定一个实数x,对应的正弦值(sinx)、余弦值(cosx)是否存在?惟一?,问题提出,1.在单位圆中,角的正弦线、余弦线分别是什么?,sin=MP,cos=OM,1.4.1 正、余弦函数的图象,知识探究(一):正弦函数的图象,思考1:作函数图象最原始的方法是什么?,思考2:用描点法作正弦函数y=sinx在0,2内的图象,可取哪些点?,思考3:如何在直角坐标系中比较精确地描出这些点,并画出y=sinx在0,2内的图象?,1,-1,0,y,x,y=sinx ( x 0,
2、),思考4:观察函数y=sinx在0,2内的图象,其形状、位置、凸向等有何变化规律?,思考5:在函数y=sinx,x0,2的图象上,起关键作用的点有哪几个?,思考6:当x2,4,-2,0,时,y=sinx的图象如何?,思考7:函数y=sinx,xR的图象叫做正弦曲线,正弦曲线的分布有什么特点?,知识探究(二):余弦函数的图象,思考1:观察函数y=x2与y=(x1)2 的图象,你能发现这两个函数的图象有什么内在联系吗?,思考2:一般地,函数y=f(xa)(a0)的图象是由函数y=f(x)的图象经过怎样的变换而得到的?,向左平移a个单位.,思考3:设想由正弦函数的图象作出余弦函数的图象,那么先要将
3、余弦函数y=cosx转化为正弦函数,你可以根据哪个公式完成这个转化?,思考4:由诱导公式可知,y=cosx与是同一个函数,如何作函数 在0,2内的图象?,思考5:函数y=cosx,x0,2的图象如何?其中起关键作用的点有哪几个?,思考6:函数y=cosx,xR的图象叫做余弦曲线,怎样画出余弦曲线,余弦曲线的分布有什么特点?,理论迁移,例1、用“五点法”画出下列函数的简图:(1)y=1+sinx,x0,2;(2)y=-cosx,x0,2 .,1,0,0,0,1,-1,1,2,0,1,x,-1,1,y,2,y=1+sinx,y=sinx,(1)y=1+sinx,x0,2;,x,-1,1,y,y=-cosx,(2)y=-cosx,x0,2 .,例2、当x0,2时,求不等式 的解集.,变式1、当x0,2时,求不等式 的解集.,变式2、当 时,函数 的值域。,小结作业,1.正、余弦函数的图象每相隔2个单位重复出现,因此,只要记住它们在0,2内的图象形态,就可以画出正弦曲线和余弦曲线.,2.作与正、余弦函数有关的函数图象,是解题的基本要求,用“五点法”作图是常用的方法.,3.正、余弦函数的图象不仅是进一步研究函数性质的基础,也是解决有关三角函数问题的工具,这是一种数形结合的数学思想.,返回,返回,