1、实验室纯水制备常识原水中的有机物可通过自然或人为产生,自然产生的有机物可由腐蛀的植物或酸性液体产生,此外,细菌、生物及其副产品都可增加水中的有机物。人为添加的有机物包括工业及家用肥料,如清洁剂、溶剂、油、化肥及杀虫剂。当过滤器处理水中杂质的同时,塑料管道及水缸会增加水中的有机物,其它处理如加氯及臭氧系统亦可增加水中的有机物。处理原水中的杂质,可通过反渗透、微滤、离子交换、吸附及紫外光等方法。大部分的杂质可用一种或多种处理方法去除,但总有机碳和这些杂质有什么关系呢?总有机碳总有机碳分为颗粒有机碳(POC),溶解有机碳(DOC)和挥发性有机碳(VOC)。在线监测的总有机碳(TOC)不区分POC/D
2、OC/VOC。尽管总有机碳不提供准确的有机物组合,但总有机碳参数是最接近的有机物指标,因此总有机碳参数可保证水中的总有机碳在实验要求的范围以下。一旦水中 TOC 含量已经达到域值,在线监测便能及时提示用户。最理想的监测是可提供快捷、高灵敏度、低成本的在线监测,如何才能达到以上的要求,我们先看看不同种有机碳监控方式。不同种类的总有机碳监测大型工业系统中的总有机碳监测系统是精密而昂贵的,而且体积较大,不适合用于实验室纯水系统。 所有的在线监测都采用同一个基本原理:纯水经过 185 nm 波长的紫外光灯会制造氧化有机物,此氧化过程将有机碳转化为二氧化碳,而二氧化碳会令水的电导率提升,总有机碳的参数就
3、可从电导率的转变进行测量。与宝尔的内置总有机碳监测相比,其它制造商提供的总有机碳监测系统无论从价位还是可测试范围都比较低,且较易损坏。除此之外,还有许多由设计方面产生的一系列弱点。宝尔总有机碳监测把所有的水通过在线的紫外灯及电阻表,作出测试及监控,达到显示参数的连续性。而其它实验室纯水机制造商的总有机碳监测都采用旁路测试。它们在每一段预定时间内把纯水从旁路引到紫外光反应盒内,待水中的有机物氧化成二氧化碳。由二氧化碳产生的电阻率差异在反应盒内或另一外置的电阻表测量。但事实上由纯水开始进入反应盒内,到相差的电阻率测试,必有数分钟的距离。所以,如用此种总有机碳监测,显示的数据便不是连续性的。TOC
4、要求 BAOLOR TOC 监测 其它 TOC 监测 其它品牌种类 连续性 在线连续性 旁路,非连续性价格 低 低 中消耗品 低 没有 高反应时间 快 1 min 快,连续性 慢(高至九分钟)准确性 2 ppb or 10 % 2 ppb at 10 ppb 2 ppb量度范围 1 10 ppb 1 200 ppb 1 999 ppb测试用水量 尽低 没有 低样本量 尽大 所有产水 小死水位置 没有 没有 有校正 有 有 有数据 版面显示及打印 版面显示及打印 版面显示及打印表 1 :Baolor 的总有机碳监测及其它总有机碳监测的功能比较总有机碳监测的反应时间实验室的总有机碳系统相对于工业系
5、统来说其出水量较少,因此需要连续显示产水前的总有机碳数值,才可确保用户实验过程中不会受有机物质的影响。要达到有连续测试的功效,电阻表是最好的选择。BAOLOR 的总有机碳监测就是这样的在线及实时监控系统,所有的纯水都通过测试。相反,如选用旁路的工业总有机碳监测系统,就不能达到理想的效果。另外,用旁路的总有机碳监测亦需时间将样本从纯水管道引入反应盒(1 3 分钟)以及完成氧化过程(3 分钟)后,总有机碳的数值才能显示到面板上。也就是说,如果纯水中的有机物有任何变化,从探测到有数值显示到面板需 3 至 9 分钟,用户是不可能实时得知水中有机物的増加或减少。为了引证在线及实时探测的重要性,我们用了
6、BAOLOR 及其它总有机碳的监测仪作了一个比较。实验测试在原水中先注入 3 毫升 (100ppm) 的有机物甲乙酮,然后在纯水出口前取样本测试。纯水中的有机物甲乙酮都经过测试及记录,注入甲乙酮的位置是根据测试取样点而定的。提供了一些实验测试的数据。将有机物(甲乙酮)注入原水中,当制备纯水时,注入的有机物会进入纯水系统内。图 1 内绿色的线代表纯水出口探测到的有机物。出水点在两分钟后见到注入的有机物大量増加。如果用户现在取水,纯水已受有机物的污染。制备纯水的工艺流程传统的纯水方法不能制备出超纯水,化学意义上纯水(液态的H2O)的理论电导率为 18.3cm.人们生产的纯水是达不到理论值的,但 1
7、8cm 似乎是可以达到的,对于这种水,有的称为高纯水有的称为超纯水,目前还没有系统的定义。也没有划分等级界限,从商业观点看叫超纯水似乎比高纯水更好听一些。现在制备超纯水的方法是将各种纯化水的新技术科学地结合起来,不仅能生产超纯水。而且变得非常容易。目前市售的超纯水器就是一个成功的例子。自来水进去超纯水出来,非常方便。而且使用寿命也越来越长。超纯水器制备超纯水的原理和步骤大体如下:1、原水:可用自来水或普通蒸馏水或普通去离子水作原水。2、机械过滤:通过砂芯滤板和纤维柱滤除机械杂质,如铁锈和其他悬浮物等。3、活性炭过滤:活性炭是广谱吸附剂,可吸附气体成分,如水中的余氯等;吸附细菌和某些过渡金属等。
8、氯气能损害反渗透膜,因此应力求除尽。4、反渗透膜过滤:可滤除 95%以上的电解质和大分子化合物,包括胶体微粒和病毒等。由于绝大多数离子的去除,使离子交换柱的使用寿命大大延长。5、紫外线消解:借助于短波(180nm-254nm)紫外线照射分解水中的不易被活性炭吸附的小有机化合物,如甲醇、乙醇等,使其转变成 CO2 和水,以降低 TOC 的指标。6、离子交换单元:已知混合离子交换床是除去水中离子的决定性手段。借助于多级混床获得超纯水也并不困难。但水的 TOC 指标主要来自树脂床。因此,高质量的离子交换树脂就成为成败的关键。所谓高质量的树脂,就是化学稳定性特别好,不分解,不含低聚物、单体和添加剂等的
9、树脂。所谓“核工业级树脂”大概就属于这一类树脂。对树脂的要求是质量越高越好。可惜国内很少有人在这方面下工夫。7、0.2m 滤膜过滤,以除去水中的颗粒物到每毫升 1 个(小于 0.2m 的).经过上述各步骤处理后生产出来的水就是超纯水了。应能满足各种仪器分析,高纯分析,痕量分析等的要求,接近或达到电子级水的要求。渗析与电渗析的区别渗析是属于一种自然发生的物理现象。如将两种不同含盐量的水,用一张渗透膜隔开,就会发生含盐量大的水的电介质离子穿过膜向含盐量小的水中扩散,这个现象就是渗析。这种渗析是由于含盐量浓度不同而引起的,称为浓差渗析。渗析过程与浓度差的大小有关,浓差越大,参析的过程越快,否则就越慢。因为是以浓差作为推动力的,因此,扩散速度始终是比较慢的。如果要加快这个速度,就可以在膜的两边施加一直流电场。电解质离子在电场的作用下,会迅速地通过膜,进行迁移过程,这就称为电渗析。渗析膜是用高分子材料制成的一种薄膜,上面有离子交换活性基团。膜内含有酸性活性基团的称为阳膜;如有碱性活性基团的称阴膜。从膜的结构上分,又可分为异相膜、均相膜、半均相膜三种。