1、有理数复习课一、课题 有理数复习课 二、教学目标1、复习整理有理数有关概念和有理数运算法则,运算律以及近似计算等有关知识;2、培养学生综合运用知识解决问题的能力;3、渗透数形结合的思想三、教学重点和难点重点:有理数概念和有理数运算难点:负数和有理数法则的理解四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、讲授新课1、阅读教材中的“全章小结”,给关键性词语打上横线2、利用数轴讲有理数有关概念本章从引入负数开始,与小学学习的数一起纳入有理数范畴,我们学习的数地范围在不断扩大 从数轴上看,小学学习的数都在原点右边(含原点),引入负数以后,数轴的左边就有了实际意义,原点所表示的
2、0 也不再是最小的数了 数轴上的点所表示的数从左向右越来越大,A 点所表示的数小于 B 点所表示的数,而 D 点所表示的数在四个数中最大我们用两个大写字母表示这两点间的距离,则 AOBOCO,这个距离就是我们说的绝对值 由 AOBOCO 可知,负数的绝对值越大其数值反而越小由上图中还可以知道 CO=DO,即 C,D 两点到原点距离相等,即 C,D 所表示的数的绝对值相等,又它们在原点两侧,那么这两数互为相反数 从数轴上看,互为相反数就是在原点两侧且到原点等距的两点所表示的数利用数轴,我们可以很方便地解决许多题目例 1 (1)求出大于-5 而小于 5 的所有整数;(2)求出适合 3 6 的所有整
3、数;x(3)试求方程 =5, =5 的解;x2(4)试求 3 的解解:(1)大于-5 而小于 5 的所有整数,在数轴上表示5 之间的整数点,如图,显然有4,3,2,1,0(2)3 6 在数轴上表示到原点的距离大于 3 个单位而小于 6 个单位的整数点x在原点左侧,到原点距离大于 3 个单位而小于 6 个单位的整数点有-5,-4;在原点右侧距离原点大于 3 个单位而小于 6 个单位的整数点有 4,5所以 适合 3 6 的整数有4,5x(3) =5 表示到原点距离有 5 个单位的数,显然原点左、右侧各有一个,分别是-5和 5所以 =5 的解是 x=5 或 x=-5x同样 =5 表示 2x 到原点的
4、距离是 5 个单位,这样的点有两个,分别是 5 和-5.2所以 2x=5 或 2x=-5,解这两个简易方程得 x= 或 x=- 25(4) 3 在数轴上表示到原点距离小于 3 个单位的所有点的集合.x很显然-3 与 3 之间的任何一点到原点距离都小于 3 个单位所以 -3x3例 2 有理数 a、b、c、d 如图所示,试求 cbdac,解:显然 c、d 为负数,a、b 为正数,且 .=-c, (复述相反数定义和表示)=a-c,(判断 a-c0)ca=-a-d,(判断 a+d0)d=b-c( 判断 b-c0)cb3、有理数运算(1)+17+20; (2)-13+(-21); (3)-15-19;
5、(4)-31-(-16); (5)-1112;(6)(-27)(-13); (7)-6416; (8)(-54)(-24); (9)(- )3; (10)-( )2;21(11)-(-1)100; (12)-23 2; (13)-(23) 2; (14)(-2) 3+32计算4( )22(- )(- )2+(- )3+(- )+11114、课堂练习(1)填空:两个互为相反数的数的和是_;两个互为相反数的数的商是_;(0 除外)_的绝对值与它本身互为相反数;_的平方与它的立方互为相反数;_与它绝对值的差为 0;_的倒数与它的平方相等;_的倒数等于它本身;_的平方是 4,_的绝对值是 4;如果-a
6、a,则 a 是_;如果 =-a3,则 a 是_;如果 ,那么2aa 是_;如果 =-a,那么 a 是_;10 如果 x3=1476 ,(-2453) 3=-14760,那么 x=_(2)用“”、“”或“=”填空:当 a0,b0,c0,d0 时: _0; _0; ba _0; _0; _0;cdcab34cba _0; _0; _0;3a2)(dc2ab 时,a0,b0,则 ;ba1_10a0,b0,则 .1七、练习设计1、写出下列各数的相反数和倒数原 数 5 -6 1 05 -132相反数倒 数2、计算:(1)50.1; (2)50.001; (3)5(-0.01);(4)0.20.1;(5)
7、0.0020.001;(6)(-0.03)0.013 计算:(1) ; (2)(-81) (-16);7128431 941(3) (4)3(-2.5)(-4)+5(-6)(-3)2;25.0435(5)0.85-12+4(3-10)5; (6)2 2+(-2)35-(-0.28)(-2)2(7)(-3) 3-(-5)3(-3)-(-5)4 分别根据下列条件求代数式 的值:yx2(1)x=-1.3,y=2.4; (2)x= ,y=- 6543八、板书设计2.12 有理数复习(一)知识回顾 (三)例题解析 (五)课堂小结例 1、例 2(二)观察发现 (四)课堂练习 练习设计九、教学后记全章复习的目的是使学生进一步系统掌握基础知识、基本技能和基本方法,进一步提高综合运用数学知识灵活地分析和解决问题的能力 因此,在选择教学内容时我们注意了下面两个方面:第一,既加强基础,又提高能力和发展智力;第二,既全面复习,又突出重点本节课是有理数全章的复习课,所以教学中抓住了有理数的概念和 理数的运算这两个主要内容,这是有理数的基础知识,也是复习的重点 此外,还通过典型例题的分析,让学生熟练地利用数轴来解题,以提高他们对数形结合思想的认识,以及分析问题、解决问题的能力学优!中考|,网