1、2.2 一元二次方程的解法(4)学习目标1、体验用配方法推导一元二次方程求根公式的过程,明确运用公式求根的前提条件是b24 ac02、会用公式法解一元二次方程学习重、难点来源:学优中考网重点:掌握一元二次方程的求根公式,并应用它熟练地解一元二次方程难点:求根公式的结构比较复杂,不易记忆;系数和常数为负数时,代入求根公式常出符号错误学习过程:一、情境创设来源:xyzkw.Com1、用配方解一元二次方程的步骤是什么?2、用配方法结合直接开平方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?3、如何解一般形式的一元二次方程 ax2 bx c = 0( a0)
2、?二、探索活动能否用配方法把一般形式的一元二次方程 ax2 bx c = 0( a0)转化为呢?24()bacx回顾用配方法解数字系数的一元二次方程的过程,让学生分组讨论交流,达成共识:因为 ,方程两边都除以 ,得 0a20bcxa移项,得 来源:xyzkw.Com配方,得 222()bcaA即 24()bxa当 ,且 时, 大于等于零吗?240bac24bca让学生思考、分析,发表意见,得出结论:当 时,因为 ,所以20c0a,从而22到此,你能得出什么结论?让学生讨论、交流,从中得出结论,当 时,一般形式的一元二次方程240bac的根为 ,即 。20()axbcax24bacx由以上研究的
3、结果,得到了一元二次方程 的求根公式:2()( )来源:xyzkw.Com2420bc这个公式说明方程的根是由方程的系数 、 、 所确定的,利用这个公式,我们可abc以由一元二次方程中系数 、 、 的值,直接求得方程的解,这种解方程的方法叫做公a式法。思考: 当 时,方程有实数根吗?240bc三、例题教学例 1 解下列方程: x23x2 = 0 2 x27x = 4分析:第 2小题要先将方程化为一般形式再用求根公式求解。来源:学优中考网 xyzkw四、课堂练习1、P 90 练习 1、22、思维拓展:用配方法解方程 x2pxq = 0(p 24q0)五、课堂小结引导学生总结: 1、用公式法解一元二次方程时要注意什么?2、任何一个一元二次方程都能用公式法求解吗?举例说明。3、若解一个一元二次方程时, b24 ac0,请说明这个方程解的情况。五、作业六、教后感学优中考,网