1、25.3 解直角三角形及其应用探究:测量底部不可到达物体的高度教学目标1认知与技能:(1)用测角仪和皮尺等工具,并结合所学的解斜三角形中相关知识解决一些实际问题;(2)一步把数和形结合起来,提高学生分析问题和解决问题的能力.2过程与方法:(1)设计实地测量方案,在设计过程中会灵活地运用三角函数关系,进行正确的边角互化;(2)学会将千变万化的实际问题转化为数学问题来解决的能力,要求学生善于将某些实际问题中的数量关系归结为直角三角形中元素之间的关系,培养学生用数学的意识.3情感、态度与价值观:(1)体会改革开放以来马鞍山日新月异的变化,增强作马鞍山人的自豪感(2)在合作解决问题过程中体会理论源于实
2、践,数学源于生活,培养学生学习数学的兴趣,通过对数学知识的应用加深对数学知识内涵的深入理解.来源:xyzkw.Com重点1重点:测量和计算底部不可到达物体的高度;2难点:利用三角函数解决较复杂的物体高度的测量与计算问题.教与学互动设计巩固提高应用迁移学生讨论并设计方案问题:如何测量学校旗杆的高度?方法:用测角仪测得旗杆顶部 A 的仰角为 ,用卷尺量出测点到旗杆的距离 a,测角仪的高度为 b在 Rt AED 中, tanED tABBA即 tab来源:xyzkw.Com(此为问题为底部可到达的物体高度的测量)合作交流解读探究情景问题:如果已知佳山电视塔塔身的高度为 40 米,如何利用测角仪得到佳
3、山的高度?工具:卷尺、测角仪(此为问题为底部不可到达的物体高度的测量)方案一分析:1.计算结果 cotDEBCAB2.进行测量的前提是必须保证点 C、 D、 E 三点共线拓展:如果不能保证在一个平面内找到共线的三点 C、 D、 E,是否有其他的测量方案?方案二分析:1.计算结果 cotAB2.进行测量的前提必须保证电视塔的底部(即山的顶端)在视线范围内拓展:如果山的对面有一个建筑物,能否利用建筑物进行山高的测量?方案一方案二来源:xyzkw.Com课堂小结底部不可到达的物体高度的测量方案:1.方案一需要保证三点共线,方案二需要保证被测物体的端点是清晰可视的,同学们需要根据具体的问题情景灵活选择2.测量的计算结果可以作为公式记忆,方便后期的学习使用在高为 60 米的山顶上,测得山底一建筑物的顶端与底端的俯角分别为 30、60,则该建筑物高为 米.来源:学优中考网 xyzkw设置目的探究问题利用了仰角对底部不可到达的物体的高度进行了测量和计算,练习题中设置了利用俯角,对于物体的高度进行测量和计算,以强化俯角的概念.发散来源:xyzkw.Com思维探索实践家庭作业 P120 B 组复习题 5、6、7省级课题初中数学探究性教与学策略的研究汇报课25.3 解直角三角形及其应用教学设计探究:测量底部不可到达物体的高度306060米学(优$中考,网