收藏 分享(赏)

《空间几何体的结构》教案2(新人教a版必修2).doc

上传人:无敌 文档编号:520141 上传时间:2018-04-09 格式:DOC 页数:5 大小:432.50KB
下载 相关 举报
《空间几何体的结构》教案2(新人教a版必修2).doc_第1页
第1页 / 共5页
《空间几何体的结构》教案2(新人教a版必修2).doc_第2页
第2页 / 共5页
《空间几何体的结构》教案2(新人教a版必修2).doc_第3页
第3页 / 共5页
《空间几何体的结构》教案2(新人教a版必修2).doc_第4页
第4页 / 共5页
《空间几何体的结构》教案2(新人教a版必修2).doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第一课时 柱、锥、台、球的结构特征(一)教学目标1知识与技能(1)通过实物操作,增强学生的直观感知.(2)能根据几何结构特征对空间物体进行分类.(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征.(4)会表示有关于几何体以及柱、锥、台的分类.2过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征.(2)让学生观察、讨论、归纳、概括所学的知识.3情感、态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力.(2)培养学生的空间想象能力和抽象概括能力.(二)教学重点、难点重点:让学生感受大量空间实物及

2、模型、概括出柱、锥、台、球的结构特征.难点:柱、锥、台、球的结构特征的概括.(三)教学方法通过提出问题,学生观察空间实物及模型,先独立思考空间几何体的结构特征,然后相互讨论、交流,最后得出完整结论.教学环节 教学内容 师生互动 设计意图复习引入1小学与初中在平面上研究过哪些几何图形?在空间范围上研究过那些?2你能根据某种标准对下列几何体进行分类吗?(展示具有柱、锥、台、球结构的空间物体)1学生回忆,相互交流教师对学生给予及时评价.2教师对学生分类进行整理。分类多面体和旋转体分类,分类二按柱、锥、台、球分类以旧导新棱柱的结构特征1观察教科书第 2 页中和图(2) 、 (5) 、 (7) 、 (9

3、) ,它们各自的特点是什么?在归纳的过程中,可引导学生从围成几何体的面的特征去观察,从而得出棱柱的主要结构特征.1有两个面互相平行;2其余各面都是平行四边形;3每相邻两个四边形的公共边互相平行.引出棱柱概念之前,应注意对具体的棱柱的特点进行充分分析,让学生能够经历共同特点的概括过程.在得到棱柱的结构特征后教师归结棱柱定义,并结合图从分析具体棱柱的特点出发,通过概括共同特点得出棱柱的结构特征.形认识棱柱有关概念.例 1 如图,过 BC 的截面截去长方形的一角,所得的几何体是不是棱柱?解析:以 AABB和 DDCC为底即知所得几何体是棱柱.例 2 观察螺杆头部模型,有多少对平行的平面?能作为棱柱底

4、面的有几对?解析:略教师投影例一并读题.有的学生可能会认为不是棱柱,因为如果选择上下两平面为底,则不符合棱柱结构特征的第二条.引导学生讨论:如何判定一个几何体是不是棱柱?教学时应当把学生的注意力引导到用概念进行判断上来,即看所给的几何体是否符合棱柱定义的三个条件.教师投影例 2 并读题.教师引导学生分析得出,平行平面共有四对,但能作为棱柱底面的只有一对,即上下两个平行平面.引导学生探究:棱柱的哪些平行的面能作为底面,此时侧面是什么?哪些平行的平面不能作为底面?通过改变棱柱放置的位置(变式) ,引导学生应用概念判别几何体.加深对棱柱结构特征的认识.棱锥的结构特征1观察教材节 2 页的图(14)

5、(15)它们有什么共同特征?2请类比棱柱、得出相关概念,分类及表示.学生进行观察、讨论、然后归纳,教师注意引导,整理.得出棱锥的结构特征,有关概念分类及表示方法.棱锥的结构特征:1有一个面是多边形.2其余各面都是有一个公共点的三分形.从分析具体棱锥出发,通过概括棱锥的共同特点,得出棱锥的结构特征.棱台的结构特征1观察教材第 2 页中图(13) 、 (16) ,思考它们可以怎样得到?有什么共同特征?2请仿照棱锥中关于侧面、侧棱、顶点的定义,给棱台相关概念下定义.教师在学生讨论中可引导学生思考棱台可以怎样得到,从而迅速得出棱台的结构特征.由一个平行于底面的平面去截棱锥,底面与截面之间的部分.突出棱

6、台的形成过程,把握棱台的结构特征.圆柱的结构特征观察下面这个几何体(圆柱)及得到这种几何体的方法,思考它与棱柱的共同特点,给它定个名称并下定义.教师演示,学生观察,然后学生给出圆柱的名称及定义,教师给出侧面、底面、轴的定义.以矩形一边所在直线为旋转轴,其余三边旋转而成的面突出圆柱的形成过程,把握圆柱的结构特征.所围成的旋转体叫做圆柱.圆柱和棱锥统称为柱体.圆锥的结构特征1观察下面这个几何体(圆锥)及得到这种几何体的方法,思考它与棱锥的共同特点,给它定个名称并下定义.2能否将轴改为斜边?以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体.圆锥与棱锥统称为锥体.突出圆锥的

7、形成过程,把握圆锥的结构特征.圆台的结构特征下面这种几何体称为圆台,请思考圆台可以用什么办法得到?请在教材图 11-9 上标上圆台的轴、底面、侧面、母线.学生 1:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分.学生 2:以直角梯形,垂直于底面的腰为旋转轴,其余各边旋转形成的面所围成的旋转体(教师演示)师:棱台与圆台统称为台体.开放性设计,学生推理与教师演示结合,培养学生思维发散性与灵活性,加深学生对概念理解.球的结构特征观察球的模型,思考球可以用什么办法得到?球上的点有什么共同特点.学生 1:以半圆的直径所在直线为旋转思,半圆面旋转一圆形的旋转体叫做球体,简称球.(教师演示)学生 2:

8、球上的点到求心的距离等于定长.教师讲解球的球心、半径、直径、表示方法.开放性设计,学生推理与教师演示结合,培养学生思维发散性与灵活性,加深学生对概念理解.归纳总结 简单几何体的结构特征及有关概念. 学生总结,然后老师补充.回顾反思、归纳知识、提升学生知识、整合能力.课后作业 1.1 第一课时 习案 学生独立完成 巩固知识提升能力备用例题例 1 下列命题中错误的是( )A圆柱的轴截面是过母线的截面中面积最大的一个B圆锥的轴截面是所有过顶点的截面中面积最大的一个C圆台的所有平行于底面的截面都是圆D圆锥所有的轴截面是全等的等腰三角形【解析】圆锥的母线长相长,设为 l,若圆锥截面三角形顶角为 ,圆锥轴

9、截面三角形顶角为 ,则 0 . 当 90时,截面面积 S = sin21l sin21l. 当 90180时.截面面积 S 22190sin1ll,故选 B.例 2 根 据 下 列 对 几 何 体 结 构 特 征 的 描 述 , 说 出 几 何 体 的 名 称 . (1)由八个面围成,其中两个面是互相平行且全等的正六边形,其它各面都是矩形;(2)一个等腰梯形绕着两底边中点的连线所在的直线旋转 180形成的封闭曲面所围成的图形. 【分析】要判断几何体的类型,首先应熟练掌握各类几何体的结构特征. 【解析】 (1)如图 1,该几何体满足有两个面平行,其余六个面都是矩形,可使每相邻两个面的公共边都相互

10、平行,故该几何体是六棱柱. (2)如图 2,等腰梯形两底边中点的连线将梯形平分为两个直角梯形,每个直角梯形旋转 180形成半个圆台,故该几何体为圆台. 点评:对于不规则的平面图形绕轴旋转问题,要对原平面图形作适当的分割,再根据圆柱、圆 锥、圆台的结构特征进行判断. 例 3 把一个圆锥截成圆台,已知圆台的上、下底面半径的比是 1:4,母线长是10cm,求圆锥的母线长. 【分析】 画出圆锥的轴截面,转化为平面问题求解. 【解析】 设圆锥的母线长为 ycm,圆台上、下底面半径分别是 xcm 、4xcm.作圆锥的轴截面如图. 在 RtSOA 中, OAOA, SASA= 图 2图 1图 418OAOA, 即(y-10)y=x 4x. y=13 31.圆锥的母线长为 13 31cm【点评】圆柱、圆锥、圆台可以看做是分别以矩形的一边、直角三角形的一直角边、直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而成的曲面所围成的几何体,其轴截面分别是矩形、等腰三角形、等腰梯形,这些轴截面集中反映了旋转体的各主要元素,处理旋转体的有关问题一般要作出轴截面.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报