收藏 分享(赏)

2018版高中数学(苏教版)必修2同步教师用书:第1章 1.1.1 棱柱、棱锥和棱台.doc

上传人:无敌 文档编号:514186 上传时间:2018-04-09 格式:DOC 页数:11 大小:860.50KB
下载 相关 举报
2018版高中数学(苏教版)必修2同步教师用书:第1章 1.1.1 棱柱、棱锥和棱台.doc_第1页
第1页 / 共11页
2018版高中数学(苏教版)必修2同步教师用书:第1章 1.1.1 棱柱、棱锥和棱台.doc_第2页
第2页 / 共11页
2018版高中数学(苏教版)必修2同步教师用书:第1章 1.1.1 棱柱、棱锥和棱台.doc_第3页
第3页 / 共11页
2018版高中数学(苏教版)必修2同步教师用书:第1章 1.1.1 棱柱、棱锥和棱台.doc_第4页
第4页 / 共11页
2018版高中数学(苏教版)必修2同步教师用书:第1章 1.1.1 棱柱、棱锥和棱台.doc_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、11 空间几何体11.1 棱柱、棱锥和棱台1通过观察实例,概括出棱柱、棱锥、棱台的定义(重点)2掌握棱柱、棱锥、棱台的结构特征及相关概念(易错、易混点)3能运用这些结构特征描述现实生活中简单物体的结构(难点)基础初探教材整理 1 棱柱阅读教材 P5 P6 第 5 行以上部分内容,完成下列问题1棱柱的定义一般地,由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱2棱柱的相关概念平移起止位置的两个面叫做棱柱的底面,多边形的边平移所形成的面叫做棱柱的侧面,相邻侧面的公共边叫做侧棱3棱柱的特点棱柱的两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形1四棱柱共有_个顶点,_个面,_条棱【答

2、案】 8 6 122下列几何体中,棱柱有_个 图 111【解析】 由棱柱的特性可判断 4 个几何体均为棱柱【答案】 4教材整理 2 棱锥阅读教材 P6 第 6 行第 13 行的内容,完成下列问题1棱锥的概念当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥2棱锥的特点棱锥的底面是多边形,侧面是有一个公共顶点的三角形1三棱锥是_面体【解析】 因为三棱锥有四个面,故三棱锥是四面体【答案】 四2五棱锥是由_个面围成【解析】 观察各棱锥可以归纳出,几棱锥就有几个侧面,因此五棱锥有5 个侧面,1 个底面,共 6 个面【答案】 6教材整理 3 棱台阅读教材 P6 倒数第 3 行 P7 例 1 以上部分内

3、容,完成下列问题用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个仍然是棱锥,另一个我们称之为棱台即棱台是棱锥被平行于底面的一个平面所截后,截面和底面之间的部分1如图 112 所示的几何体中,_是棱柱,_是棱锥,_是棱台. 【导学号:41292001】图 112【解析】 由棱柱、棱锥和棱台的定义知,符合棱柱的定义,符合棱锥的定义,是一个三棱柱被截去了一段,符合棱台的定义故是棱柱,是棱锥,是棱台【答案】 2下列叙述是棱台性质的是_两底面相似;侧面都是梯形;侧棱都平行;侧棱延长后交于一点【答案】 教材整理 4 多面体阅读教材 P7 例 1 下面的部分,完成下列问题棱柱、棱锥和棱台都是由一些平

4、面多边形围成的几何体由若干个平面多边形围成的几何体叫做多面体判断(正确的打“” ,错误的打“”)(1)棱柱的侧面是平行四边形( )(2)棱台的侧棱延长后不一定交于一点( )(3)棱台的侧面是梯形( )(4)面数最少的多面体是四面体( )【答案】 (1) (2) (3) (4)小组合作型棱柱、棱锥和棱台的概念及结构特点(1)下列命题中,正确的是_五棱柱中五条侧棱长度相同;三棱柱中底面三条边长度都相同;三棱锥的四个面可以都是钝角三角形;棱台的上底面的面积与下底面的面积之比一定小于 1.(2)下列说法正确的是_棱锥的侧面不一定是三角形;棱锥的各侧棱长一定相等;棱台的各侧棱的延长线交于一点;有两个面互

5、相平行,其余各面都是梯形,则此几何体是棱台(3)下列三个命题,其中不正确的是_用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;两个底面平行且相似,其余各面都是梯形的多面体是棱台;有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台【精彩点拨】判断几何体结构特征的主要依据是棱柱、棱锥、棱台的概念【自主解答】 (1)由棱柱的特点知命题正确三棱柱的底面不一定为等边三角形,所以命题不正确如图所示,取以点 O 为端点的三条线段OA,OB,OC,使得AOBBOCCOA100 ,且 OAOBOC,这时AOB,BOC ,COA 都是钝角三角形,只有 ABC 为等边三角形,可让点C 沿 OC 无限靠近点

6、O,则ACB 就可趋近于 100,所以每个面都可以是钝角三角形,故命题正确由棱台的定义知,棱台是由棱锥截得的,截面是棱台的上底面,故上底面的面积一定小于下底面的面积,所以命题正确综上所述,可知正确(2)棱锥的侧面是有公共顶点的三角形,但是各侧棱不一定相等,故不正确;棱台是由平行于棱锥底面的平面截棱锥底面得到的,故各个侧棱的延长线一定交于一点,正确;棱台的各条侧棱必须交于一点,故错误(3)必须用一个平行底面的平面去截棱锥,棱锥底面和截面之间的部分才是棱台,故不正确;两个底面平行且相似,其余各面都是梯形的多面体并不能说明各条侧棱是否交于一点,故不能判定正确;有两个面互相平行,其余四个面都是等腰梯形

7、的六面体不一定是棱台,不正确【答案】 (1) (2) (3)对于判定关于棱柱、棱锥、棱台的命题真假的问题,求解的关键是抓住棱柱、棱锥、棱台的概念与特征除此之外,还可以利用举例或找反例的方法来判断再练一题1给出下列几个命题:棱柱的侧面不可能是三角形;棱锥的侧面为三角形,且所有侧面都有一个公共顶点;多面体至少有 4 个面;将一个正方形沿不同方向平移得到的几何体都是正方体其中真命题是_. 【导学号:41292002】【解析】 均为真命题;对于,一个图形要成为空间几何体,则它至少需有 4 个顶点,3 个顶点只能构成平面图形,当有 4 个顶点时,可围成 4个面,所以一个多面体至少应有 4 个面,而且这样

8、的面必是三角形,故也是真命题;对于,当正方形沿与其所在平面垂直的方向平移,且平移的长度恰好等于正方形的边长时,得到的几何体才是正方体,故不正确故填.【答案】 空间几何体的判定如图 113,四边形 AA1B1B 为边长为 3 的正方形,CC12,CC 1AA 1,CC 1BB 1,请你判断这个几何体是棱柱吗?若是棱柱,指出是几棱柱若不是棱柱,请你试用一个平面截去一部分,使剩余部分是一个侧棱长为 2 的三棱柱,并指出截去的几何体的特征在立体图中画出截面图 113【精彩点拨】 依据棱柱的定义进行判断【自主解答】 (1)因为这个几何体的所有面中没有两个互相平行的面,所以这个几何体不是棱柱(2)在四边形

9、 ABB1A1 中,在 AA1 上取 E 点,使 AE2;在 BB1 上取 F 点,使 BF2;连结 C1E,EF,C 1F,则过 C1,E,F 的截面将几何体分成两部分,其中一部分是三棱柱ABC EFC1,其侧棱长为 2;截去部分是一个四棱锥 C1EA 1B1F.认识一个几何体,需要看它的结构特征,并且要结合它各面的具体形状,棱与棱之间的关系,分析它是由哪些几何体组成的组合体,并能用平面分割开再练一题2.如图 114 所示,已知长方体 ABCDA 1B1C1D1.图 114(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面 BCFE 把这个长方体分成两部分后,各部分形成的几何体

10、是棱柱吗?如果是,是几棱柱?并指出底面如果不是,请说明理由【解】 是棱柱,并且是四棱柱因为它可以看成由四边形 ADD1A1 沿 AB方向平移至四边形 BCC1B1 形成的几何体,符合棱柱的定义(2)截面 BCFE 右边的部分是三棱柱 BEB1CFC 1,其中BEB 1 与CFC 1是底面截面 BCFE 左边的部分是四棱柱 ABEA1DCFD 1,其中四边形 ABEA1和四边形 DCFD1 是底面探究共研型多面体及多面体的有关概念探究 1 观察下面四个几何体,这些几何体都是多面体吗?怎样定义多面体?(1) (2) (3) (4)图 115【提示】 这四个几何体都是多面体,多面体是由若干个平面多边

11、形围成的几何体探究 2 多面体集合的哪些性质可以作为它的特征性质?【提示】 多面体的每一个面都是多边形探究 3 根据图 116 所给的几何体的表面展开图,画出立体图形(1) (2)图 116【提示】 将各平面图折起来的空间图形如图所示(1) (2)画出如图 117 所示的几何体的表面展开图(1) (2)图 117【精彩点拨】 作出模型,将模型剪开,观察展开图【自主解答】 表面展开图如图所示:(1) (2)多面体表面展开图问题的解题策略1绘制展开图:绘制多面体的表面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出

12、来,然后依次画出各侧面,便可得到其表面展开图2已知展开图:若是给出多面体的表面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推同一个几何体的表面展开图可能是不一样的,也就是说,一个多面体可有多个表面展开图再练一题3给出如图 118 所示的正三角形纸片,要求剪拼成一个正三棱柱模型,使它的表面积与原三角形的面积相等,请设计一种剪拼方法,用虚线标在图中,并写出简要说明图 118【解】 如图,在正三角形三个角上剪出三个相同的四边形,其较长的一组邻边长为三角形边长的 ,有一组对角为直角,余下的部分沿虚线折起,可成14为一个缺上底的正三棱柱,而剪出的三个相同的四边形恰好可以拼成这个正三棱柱的上底1

13、棱柱的侧棱最少有_条,棱柱的侧棱长之间的大小关系是_【答案】 3 相等2如图 119 所示,不是正四面体的展开图的是_ 图 119【解析】 可选择阴影三角形作为底面进行折叠,发现可折成正四面体,不论选哪一个三角形作底面折叠都不能折成正四面体【答案】 3下列四个命题:(1)棱柱的底面一定是平行四边形;(2)棱锥的底面一定是三角形;(3)棱锥被平面分成的两部分不可能都是棱锥;(4)棱柱被平面分成的两部分可以都是棱柱其中正确的是_(填序号). 【导学号:41292003】【答案】 (4)4如图 1110,将装有水的长方体水槽固定底面一边后将水槽倾斜一个小角度,则倾斜后水槽中的水形成的几何体的形状是_图 1110【解析】 结合棱柱的定义可知倾斜后水槽中水形成的几何体的形状应为四棱柱

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报