1、13.3.1 基本不等式班级: 姓名: 使用时间:【学习目标】1. 理解基本不等式的内容及证明;2. 能初步运用基本不等式证明简单不等式和比较两个数(式)的大小;【导读流程】1、预习 导 航,要点指津我们知道( a-b)20 对于 ,abR都成立,展开得 a2-2ab+b20,变形得: a2+b22 ab, 当且仅当 a=b 时取“=” 。 于是我们得到如下结论:如果 ,ab,那么 a2+b2 _2ab。 (当且仅当_时取”=”号).- -重要不等式2、自主探索,独立 思 考思考 1:将上面结论中的 a,b 分别用 ,ab代替,结论会变成怎样?前提还是不是,abR?思考 2:将重要不等式 a2
2、+b22 ab 的两边同时加上 a2+b2,又能将不等式化成什么形式?新不等式什么时候取等号?1.重要不等式2.基本不等式3、:小组合作探究, 议 疑解惑探究一基本不等式的简单应用例 1:已知 x、 y 都是正数利用基本不等式求证: 2.yx xy2探究二 利用基本不等式证明不等式例 2 已知 a,b,c 为任意实数,求证: 22.abcabc探究三 含条件的不等式证明例 3 已知 ,abcR,且 1abc,求证 1()()8abc.4、 展 示你的收获五、重、难、疑点 评 析(由教师归纳总结点评)六、达标 检 测 1. 设 a,b 均为正数,证明不等式: ba122:已知 a0, b0, a b1,求证:(1 )(1 )9.1a 1b