1、1.误差和稳态误差,2.系统类型,3.阶跃输入作用下的稳态误差和静态位置误差系数,3-6线性系统的稳态误差计算,4.斜坡输入作用下的稳态误差和静态位置误差系数,5.加速度输入作用下的稳态误差和静态位置误差系数,6.动态误差系数,7.扰动作用下的稳态误差,8.减小或消除稳态误差的措施,系统稳定是前提,控制系统的性能,动态性能,稳态性能,稳态误差,稳态误差的不可避免性,在阶跃函数作用下具有原理性稳态误差的系统。,摩擦,不灵敏区,零位输出等非线性因素,输入函数的形式不同,(阶跃、斜坡、或加速度),无差系统:,有差系统:,在阶跃函数作用下没有原理性稳态误差的系统。,本节主要讨论,原理性稳态误差的计算方
2、法,系统结构-系统类型,输入作用方式,附加稳态误差的计算方法,本 书 第8 章 介 绍,1.误差和稳态误差,稳态误差的定义,图3-22 控制系统框图,输出的实际值,输出的希望值,实际系统中可以量测,(真值很难得到),由图3-22可得误差传递函数,1、 在系统输入端定义的误差(实际采用定义),2、 在系统输出端定义的误差:,该误差在系统中并不存在,对误差的期望,瞬态分量,稳态分量,输入形式,结构形式,开环传递函数,给定的稳定系统,当输入信号形式一定时,系统是否存在稳态误差,就取决于开环传递函数所描述的系统结构,按照控制系统跟踪不同输入信号的能力来进行系统分类是必要的,2. 系统类型,终值定理,求
3、稳态误差。,Type,2. 系统类型,令系统开环传递函数为,!,系统类型(type)与系统的阶数(order)的区别,系统稳态误差计算通式则可表示为,分别讨论阶跃、斜坡和加速度函数的稳态误差情况,3.阶跃输入作用下的稳态误差和静态位置误差系数,Static position error constant,要求对于阶跃作用下不存在稳态误差,则必须选用型及型以上的系统,4.斜坡输入作用下的稳态误差和静态速度误差系数,静态速度误差系数,Static velocity error constant,表明:0型系统在稳态时不能跟踪斜坡输入;,型单位反馈系统,稳态输出速度恰好与输入速度相同,但存在一个稳态
4、位置误差;,型及型以上的系统,稳态时能准确跟踪斜坡 输入信号,不存在位置误差。,(图3-32型单位反 馈系统的速度误差),静态加速度误差系数,Static acceleration error constant,5.加速度输入作用下的稳态误差和静态加速度误差系数,图3-33型单位反馈 系统(的加速度误差),表明:,0型及型单位反馈系统在稳态时都不能跟踪加速度输入;,型单位反馈系统,稳态输出的加速度与输入加速度函数相同,但存在一定的稳态位置误差;,型及型以上的系统,只要系统稳定,其稳态输出能准确跟踪加速度输入信号,不存在位置误差。,(1) 尽管将阶跃输入、速度输入及加速度输入下系统的误差分别称之
5、为位置误差、速度误差和加速度误差,但对速度误差、加速度误差而言并不是指输出与输入的速度、加速度不同,而是指输出与输入之间存在一确定的稳态位置偏差。,(2) 如果输入量非单位量时,其稳态偏差(误差)按比例增加。,(3) 系统在多个信号共同作用下总的稳态偏差误差等于多个信号单独作用下的稳态偏差(误差)之和。,注意:,例:I型单位反馈系统的开环增益K=600s-1,系统最大跟踪速度max =24/s,求系统在最大跟踪 速度下的稳态误差。,解:单位速度输入下的稳态误差,I型系统,系统的稳态误差为,例:阀控油缸伺服工作台要求定位精度为0.05cm,该工作台最大移动速度vmax =10cm/s,若系统为I
6、型,试求系统开环增益。,单位速度输入下的稳态误差为,系统的开环增益,例:一单位反馈控制系统,若要求:跟踪单位斜坡输入时系统的稳态误差为2。设该系统为三阶,其中一对复数闭环极点为1j和1j。求满足上 述要求的开环传递函数。,解:根据和的要求,可知系统是型三阶系统,因而令其开环传递 函数为,因为,按定义,相应闭环传递函数,所求开环传递函数为,系统输入有用输入扰动,对“扰动作用下”稳态误差的要求,理想情况下,总希望扰动对系统输出不产生影响。,七、扰动作用下的稳态误差,据叠加定律,以下推导在输入为零的假设下,扰动作用:负载转矩的变动、放大器的零位和 噪声、电源电压和频率的波动、元件的零位、环境温度的变
7、化,假如系统稳定,输入信号的L变换的极点在左半平面或原点, 则:,扰动作用下稳态误差的定义,扰动作用下理想输出为零,于是“输出端误差”可写为,扰动作用下稳态误差的求取,增大系统开环增益或扰动点之前系统的前向通路增益,在系统的前向通道或主反馈通道设置串联积分环节,采用串级控制抑制内回路扰动,采用复合控制方法,8. 减小或消除稳态误差的措施,求在单位阶跃扰动作用下的扰动误差essn,比例积分环节提高稳态精度,求在单位阶跃扰动作用下的扰动误差essn,比较两个系统,在单位阶跃输入信号下的稳态误差。,闭环回路提高稳态精度,如果稳态增益G0(0)将随时间消逝而偏离1,稳态误差不再等于0须重新调整系统。,单位阶跃输入下,设在回路的传递函数中有如下的变化:K=10,K=1,单位阶跃输入下,设在回路的传递函数中有如下的变化: K=10,K=1, 且有Kp=100/K,若,位置随动系统:雷达跟踪系统、 船舵操纵系统。,(1)输入量补偿的复合控制,采用复合控制方法,系统在控制信号作用下,(2)干扰量补偿的复合控制,作业,3-15,3-16,3-18,