收藏 分享(赏)

2014年江苏高考理科数学试题含答案(Word版).doc

上传人:eco 文档编号:4835738 上传时间:2019-01-15 格式:DOC 页数:11 大小:503.50KB
下载 相关 举报
2014年江苏高考理科数学试题含答案(Word版).doc_第1页
第1页 / 共11页
2014年江苏高考理科数学试题含答案(Word版).doc_第2页
第2页 / 共11页
2014年江苏高考理科数学试题含答案(Word版).doc_第3页
第3页 / 共11页
2014年江苏高考理科数学试题含答案(Word版).doc_第4页
第4页 / 共11页
2014年江苏高考理科数学试题含答案(Word版).doc_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、绝密启用前2014 年普通高等学校招生全国统一考试(江苏卷)数 学 参考公式:圆柱的侧面积公式: ,其中 是圆柱底面的周长, 为母线长.clS侧 l圆柱的体积公式: , 其中 是圆柱的底面积, 为高.hV侧 Sh一 、 填 空 题 : 本 大 题 共 14 小 题 , 每 小 题 5 分 , 共 计 70 分 请 把 答 案 填 写 在 答 题 卡 相 应 位 置 上 1. 已知集合 A= , ,则 .,323,21BBA2. 已知复数 (i 为虚数单位 ),则 的实部为 .2)i5(zz3. 右图是一个算法流程图,则输出的 的值是 .n 开始 0n120n输出 n结束(第 3 题) NY注

2、意 事 项考生在答题前请认真阅读本注意事项及各题答题要求:1 本 试 卷 共 4 页 , 均 为 非 选 择 题 ( 第 1 题 第 20 题 , 共 20 题 ) 。 本 卷 满 分 为 160 分 。 考试 时 间 为 120 分 钟 。 考 试 结 束 后 , 请 将 本 试 卷 和 答 题 卡 一 并 交 回 。2 答 题 前 , 请 您 务 必 将 自 己 的 姓 名 、 考 试 证 号 用 0.5 毫 米 黑 色 墨 水 的 签 字 笔 填 写 在 试 卷及 答 题 卡 的 规 定 位 置 。3 请 认 真 核 对 监 考 员 在 答 题 卡 上 所 粘 贴 的 条 形 码 上 的

3、 姓 名 、 准 考 证 号 与 您 本 人 是 否 相 符 。4 作 答 试 题 必 须 用 0.5 毫 米 黑 色 墨 水 的 签 字 笔 在 答 题 卡 的 指 定 位 置 作 答 , 在 其 它 位 置作 答 一 律 无 效 。5如需作图,须用 2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。4. 从 1,2,3,6 这 4 个数中一次随机地取 2 个数,则所取 2 个数的乘积为 6 的概率是 .5. 已知函数 与 (0 ),它们的图象有一个横坐标为 的交点,则 的值是 .xycos)2in(xy36. 设抽测的树木的底部周长均在区间80,130上,其频率分布直方图如图所示,则在抽测的

4、 60 株树木中,有 株树木的底部周长小于 100cm.【考点】频率分布直方图侧10080 90 110 120 1300.0100.0150.0200.0250.030底部周长/cm(第 6 题)7. 在各项均为正数的等比数列 中, ,则 的值是 .na,124682a68. 设甲、乙两个圆柱的底面分别为 , ,体积分别为 , ,若它们的侧面积相等,且 ,1S21V2 4921S则 的值是 .21V9. 在平面直角坐标系 中,直线 被圆 截得的弦长为 .xOy032yx 4)1()2(2yx10. 已知函数 若对于任意 ,都有 成立,则实数 的取值范围是 .,1)(2mxf 1,mx0)(x

5、fm11. 在平面直角坐标系 中,若曲线 (a,b 为常数) 过点 ,且该曲线在点 P 处的切线xOyxy2 )5,2(P与直线 平行,则 的值是 .0327ba12. 如图,在平行四边形 中,已知 , , ,ABCD8AB5DPC3,则 的值是 .2BPA13. 已知 是定义在 R 上且周期为 3 的函数,当 时, .若函数 在区)(xf )30x|21|(2xf axfy)(间 上有 10 个零点(互不相同),则实数 的取值范围是 .4,3aA BD CP(第 12 题)14. 若 的内角满足 ,则 的最小值是 .ABCCBAsin2isincos二 、 解 答 题 : 本 大 题 共 6

6、 小 题 , 共 计 90 分 请 在 答 题 卡 指 定 区 域 内 作 答 , 解 答 时 应 写 出 文 字 说 明 、 证 明 过 程或 演 算 步 骤 15.(本小题满分 14 分)已知 , .2(5sin(1)求 的值;)4si(2)求 的值.)265cos(16.(本小题满分 14 分)如图,在三棱锥 中, ,E,F 分别为棱ABCPD的中点.已知 ,ACP, ,6PA58DFB求证: (1)直线 平面 ;/(2)平面 平面 .E17.(本小题满分 14 分)如图, 在平面直角坐标系 中, 分别是椭圆 的左、右焦点,顶点 的坐xOy21F)0(123bayx B标为 ,连结 并延

7、长交椭圆于点 A,过点 A 作),0(b2BF 轴的垂x线交椭圆于另一点 C,连结 .1(1)若点 C 的坐标为 ,且 ,求椭圆的方程;)34(2(2)若 求椭圆离心率 e 的值.,1A 第第16第第PDCEFBAF1 F2O xyBCA(第 17 题)18.(本小题满分 16 分)如图, 为了保护河上古桥 ,规划建一座新桥 BC,同时设立一个圆形保护区.规划要求:新桥 BC 与河岸OAAB 垂直;保护区的边界为圆心 M 在线段 OA 上并与 BC 相切的圆 .且古桥两端 O 和 A 到该圆上任意一点的距离均不少于 80m. 经测量,点 A 位于点 O 正北方向 60m 处, 点 C 位于点

8、O 正东方向 170m 处(OC为河岸), .34tanBC(1)求新桥 BC 的长;(2)当 OM 多长时 ,圆形保护区的面积最大?170 m60 m东北OABMC(第 18 题)19.(本小题满分 16 分)已知函数 ,其中 e 是自然对数的底数.xxfe(1)证明: 是 R 上的偶函数;(2)若关于 的不等式 在 上恒成立,求实数 的取值范围;)(mf1x),0(m(3)已知正数 满足:存在 ,使得 成立.试比较 与 的大小,并证a),0)3(0xaxf1eae明你的结论.20.(本小题满分 16 分)设数列 的前 项和为 .若对任意正整数 ,总存在正整数 ,使得 ,则称 是“H 数nanSnmmnaSn列”.(1)若数列 的前 n 项和 ( N ),证明: 是“H 数列”;2a(2)设 是等差数列 ,其首项 ,公差 .若 是 “H 数列”,求 的值;n 1a0dnd(3)证明:对任意的等差数列 ,总存在两个“H 数列” 和 ,使得n bncnncba( N )成立.【解析】 (1)首先 12aS,当 n时, 112nnnaS,所以2,na,所

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 高考课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报